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Abstract. Documenting and interpreting plant phenology events such as leafing, flowering and fruiting can be important 
for ecological studies and for understanding the effects of climate change on plant life cycles. Such events are often 
captured within photographs taken by amateur and professional naturalists and uploaded to public photo-sharing sites, 
e.g., Flickr. We explore the feasibility of using these crowd-sourced photographs to interpret flowering phenology through 
an automated workflow, which involves downloading photographs from Flickr via its Application Programming Interface 
(API), analysing them for open flowers using a machine-learning model (i.e., YOLOv5) and generating graphs of 
flowering phenology. For a test sample of three Cratoxylum species, we obtained a good match between manual and 
model classifications of such photographs. We discuss the limitations of our model and workflow and highlight areas for 
future work. 
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INTRODUCTION 
 
Phenology is the timing of life cycle events in animals and plants. More than just being important information about the 
biology of plant species (e.g., the timing of leafing, flowering, or fruiting), plant phenology data can have implications 
for ecological studies which examine inter- or intra-specific interactions, or plant-animal interactions and their related 
processes such as pollination and dispersal (e.g., Kharouba et al., 2018; Renner & Zohner, 2018). Moreover, since 
phenology is often intricately linked to seasonal variations in the environment, noticeable changes in these patterns of 
plant life cycle events can be examined to understand the effects of climate change and rare climatic events (e.g., Visser 
& Both, 2005; Renner & Zohner, 2018). 
 
Photographs taken and uploaded by amateur and professional naturalists to public photo-sharing websites such as Flickr 
(https://www.flickr.com/) are one way in which plant phenology events are recorded. Such crowd-sourced photographs 
are thus accessible and potentially useful sources of plant phenology information. With regulated or open-access use via 
Application Programming Interfaces (APIs) provided by some websites, the retrieval of such images and their metadata 
can be automated using computer scripts. Machine-learning models can then be used to infer if these images contain 
objects of interest, such as flowers and fruits. The results can be collated to track such phenological events. 
 
Computer vision is a field of machine-learning that derives meaningful information from visual inputs such as images or 
videos. With the development of Convolution Neural Networks (CNN) for learning and the use of Graphic Processing 
Units for efficient processing, computer vision models have advanced rapidly in the past decade. In 2012, AlexNet 
(Krizhevsky et al., 2017) achieved a breakthrough by being the first CNN model to win the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) (Russakovsky et al., 2015), with an error rate of 15.3%. Within three years, a team 
from Microsoft Research, who won the ILSVRC 2015 challenge, created ResNet (He et al., 2016), which improved the 
error rate to just 3.57%, below the estimated margin of 5.1% for humans (Russakovsky et al., 2015). A lot of emphasis 
has now been placed on making the model architecture more efficient, i.e., having smaller models coupled with faster 
inference but with little trade-offs in performance. Two such popular frameworks are EfficientNet (Tan & Le, 2019) and 
YOLO (Redmon et al., 2016). 
 
This study aims to explore the feasibility of interpreting flowering phenology from the automated classification of crowd-
sourced photographs available online. Using Flickr as an example, we propose a workflow to gather the photographs and 
metadata (e.g., the date taken) and analyse the photographs for open flowers using a computer vision machine-learning 
model. We demonstrate the utility of our selected model and workflow for three Cratoxylum (Hypericaceae) species 
(Cratoxylum cochinchinenese, Cratoxylum formosum and Cratoxylum maingayi). These species were selected as they are 
considerably easy to identify and have a visible, attractive flowering period, which takes place a few times a year and is 
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thus likely to be noticed and photographed. These three species are also often planted for their ornamental value, therefore 
observations on their flowering patterns may be of horticultural interest. We present graphs of the flowering phenology 
of these species, which may be useful for understanding the patterns of these events. 
 
 

MATERIAL & METHODS 
 
Given a particular plant species name, an API can be called to retrieve the relevant metadata associated with a photograph, 
including the date taken and Uniform Resource Locator (URL). Each photograph can then be downloaded via its URL. 
Photographs of Cratoxylum cochinchinenese, Cratoxylum formosum and Cratoxylum maingayi were downloaded from 
Flickr’s API (Flickr, n.d.). We were unable to restrict the selection of photographs to only those taken in a particular 
geographical region of interest because most photographs are not tagged with location information, therefore all 
photographs available for each Cratoxylum species were used. 
 
We manually labelled each downloaded photograph to note the presence or absence of open flowers. The same 
photographs were then analysed by a machine-learning model, henceforth referred to as a ‘flower classifier’, to infer if 
they contained any open flowers. The computer vision model used for the flower classifier in this study was YOLOv5 
(Jocher et al., 2021). YOLOv5 is a family of object detection models pretrained on the COCO dataset (Lin et al., 2014), 
and implemented in PyTorch (Paszke et al., 2019). The model type, YOLOv5s (‘s’ for small), was chosen for its fast 
training and inference speed, which makes it ideal for a quick evaluation of its suitability for this use-case. We used an 
object-detection model (i.e., ‘is there any flower in an image, and if so, where is it located’) instead of a pure classification 
model (i.e., ‘is there any flower in an image’) as it: 1) allows the model to learn the features of flowers directly through 
annotation (i.e., bounding boxes drawn around each flower in an image), 2) learns a larger sample size of flowers as a 
result and 3) has better model explainability by interpreting the bounding box within an image which it identifies as a 
flower (as illustrated later in the Results section, see Fig. 2b). A post-processing script was then added to simplify the 
model output to whether or not flowers were present in each image. 
 
Transfer learning was applied by training YOLOv5s on a diverse flower dataset from Google’s Open Images Dataset 
(Kuznetsova et al., 2020). A total of 1,750 and 400 flower images were used for training and validation respectively, 
representing 8,598 and 605 instances of pre-annotated flowers within the images. A curated list of background images 
without any flowers, representing about 10% of the total number of flower images, was also added to improve the 
prediction performance (Jocher, 2020). The default hyperparameters recommended by YOLOv5 were used, and a training 
job of 60 epochs was run. The best model was selected based on the lowest error obtained from the loss function calculated 
from each training epoch.  
 
Graphs of flowering phenology, i.e., of the number of photographs inferred to show open flowers for each month of the 
year based on the dates of the photographs given on Flickr, were plotted. For each species, a comparison was then made 
between the phenology graphs produced from manual classification and machine-learning classification. 
 
The workflow described above is illustrated in Fig. 1 and was developed using the Python programming language version 
3.8 (Python Software Foundation, 2019). 
 

 
Fig. 1. Proposed workflow for the automated generation of phenology data from crowd-sourced photographs, for use in plotting species-
specific phenology graphs. 
 
 
Evaluation metrics typical for classification models, i.e., accuracy, precision, recall and F1 score, were computed. Each 
of these metrics provides varying information on model performance (Table 1). For this instance, F1 score is preferred 
since it is essential to predict the presence of flowering accurately, while factoring the costs of both false positives and 
false negatives. Confusion matrices were generated to show the breakdown among the prediction classes. 
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Table 1. Model evaluation metrics used. TP = True Positive (model detects at least one flower when there is at least one flower in the 
image), TN = True Negative (model does not detect any flowers when there is no flower in the image), FP = False Positive (model 
detects at least one flower when there is no flower in the image), FN = False Negative (model does not detect any flower when there 
is at least one flower in the image). 

Metrics Formula Description 
Accuracy TP + TN / (TP + TN + FP + FN) Measure of all correctly identified cases (TP + TN). Unable to detect 

imbalances between classes, e.g., a high precision and high recall model can 
have the same accuracy. 

Precision TP / (TP + FP) Measure of correctly identified positive cases (TP) among all predicted 
positive cases (TP + FP). Important when cost of FP is high, e.g., in email 
spam removal, we do not want to remove non-spam emails. 

Recall TP / (TP + FN) Also known as sensitivity. Measure of correctly identified positive cases (TP) 
among all actual positive cases (TP + FN). Important when cost of FN is high, 
e.g., in cancer detection, we do not want to incorrectly predict a legitimate 
cancer case as negative. 

F1 Score 2 * (Precision * Recall) / 
(Precision + Recall) 

Harmonic mean of precision and recall. Used when both FP and FN are 
important. 

 
 

RESULTS 
 
Individual and compiled confusion matrices of model predictions for the presence of open flowers in the manually labelled 
photographs of the three Cratoxylum species are presented in Table 2. Overall, the evaluation metrics translate to an 
accuracy of 84.79%, precision of 91.06%, recall of 85.67% and F1 score of 88.28%. 
 
 
Table 2. Confusion matrices of the flower classifier model applied to the test set of photographs of three Cratoxylum species available 
on Flickr.  

 Model 
Open flowers present Open flowers absent 

Manual 

 Cratoxylum cochinchinense 
Open flowers present 73 (52.5%) 14 (10.1%) 
Open flowers absent 11 (7.9%) 41 (29.5%) 

 Cratoxylum formosum 
Open flowers present 87 (60.4%) 11 (7.6%) 
Open flowers absent 12 (8.3%) 34 (23.6%) 

 Cratoxylum maingayi 
Open flowers present 115 (58.4%) 21 (10.7%) 
Open flowers absent 4 (2.0%) 57 (28.9%) 

 Total 
Open flowers present 275 (57.6%) 46 (9.6%) 
Open flowers absent 27 (5.6%) 132 (27.5%) 

 
 
Among the photographs manually labelled as containing open flowers that were misclassified by the model, 12 of them 
were photographs of the whole plant taken from afar (e.g., Fig. 2a), from which the model was not trained to detect open 
flowers. On the other hand, among the photographs manually labelled as not containing open flowers, six were 
misclassified by the model as containing open flowers (e.g., Fig. 2b). In some cases, this was due to the presence of ripe 
fruits that were split open, creating features that resembled flower petals or sepals. 
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Fig. 2. Examples of images misclassified by the machine-learning model. (a) A flowering Cratoxylum maingayi tree photographed 
from afar, showing the full crown of the tree in bloom, which was misclassified as not containing flowers. (b) Ripe split fruits of 
Cratoxylum cochinchinense misclassified as open flowers (indicated by the red bounding boxes). (Photographs by Ng Xin Yi). 
 
 
The outcome of the automated workflow is a flowering phenology graph showing the pattern of monthly flowering by 
number of years (Fig. 3, red curves). We compared this against the human-verified manual classification of the 
photographs (Fig. 3, blue curves). The flowering phenology graphs produced by the machine-learning model generally 
matched well with those produced by manual classification. Peak flowering was observed in March for Cratoxylum 
formosum and Cratoxylum maingayi and in April–May for Cratoxylum cochinchinense (Fig. 3). In Singapore, this follows 
the onset of the dry season of the Late Northeast Monsoon from late January to early March (Meteorological Service 
Singapore, n.d.). A second smaller peak in flowering is observed in November for Cratoxylum formosum and Cratoxylum 
maingayi and in October for Cratoxylum cochinchinense (Fig. 3), following the dry period of the Southwest Monsoon. 
 

 

 

 
Fig. 3. Monthly flowering patterns of three Cratoxylum species derived from photographs and dates extracted via Flickr’s API. 
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DISCUSSION 
 
We have demonstrated an end-to-end workflow to obtain flowering phenology data for a test sample of three Cratoxylum 
species. The source code and model are made publicly available at https://github.com/mapattacker/phenology. The 
success of this automated workflow relies on both the model performance of the flower classifier, as well as the quality 
and quantity of photographs that can be obtained from the photo-sharing websites via their API. It should be noted that 
our workflow, which searches for plant species by their name, assumes that the photographers have correctly titled or 
tagged their photographs. The model performed well on the test species we used, achieving an F1 score of 88.28%. 
 
There are a few drawbacks to training a single generic model that applies to a wide diversity of flowers. First, as shown 
in Fig. 2b, the model detected some fruits as flowers because of the presence of similar features. This can be especially 
problematic for other species, for example, Dillenia suffruticosa (simpoh ayer), in which the fruit has features and bright 
colours that visually resemble a flower; indeed, in a separate test of our model on this species, it classified the fruits as 
flowers in all instances. Our current model is thus not suitable for identifying flowers in such species. Second, using this 
generalised flower classifier, images in which the background contains flowers of another species will also be 
misclassified as having open flowers. Although we only found few (less than 10) of such instances while testing the 
workflow on various plant species, this suggests that manual (e.g., human-in-the-loop) validation may be necessary if 
unexplained monthly spikes in flowering are noticed for the study species.  
 
To address such shortcomings, a more specific multi-class model can be trained to detect flowers of plants at the 
taxonomic level of genus or even individual species. The output of this model can then be added to that of the first 
generalised model if a flower is detected. While the benefits are obvious, such high specificity involves time- and 
resource-intensive costs such as the collection of sufficient numbers of well-annotated and representative images of 
flowers for each plant genus or species. This could be explored in future work that might make use of reliable source(s) 
of images which can be continually retrieved and retrained for each species or genus. Such a workflow likely already 
exists for many plant identification mobile applications (for example, PlantSnap [https://www.plantsnap.com] or 
LeafSnap [https://plantidentifier.info]), which have terms of use and privacy policies indicating that the collection of user-
submitted images and their corresponding metadata takes place, which we might logically assume are used to fine-tune 
their models. 
 
Without such specific models, we used Flickr as our image source for photographs of plants in flower since, based on our 
observations, this platform is typically used by serious hobbyists and professional botanists and thus quite reliable as a 
source of correctly identified and high-quality photographs. However, one limitation of this platform is that users do not 
necessarily include location information with their photographs and we were thus unable to automate the selection of 
photographs to be from only a specific geographic region of interest. This may have implications for the accuracy of the 
phenology patterns obtained, as it is possible that climatic differences across the distribution range of a species could 
result in slight variations in phenology patterns for the same species occurring in different areas. 
 
Additionally, the downside of using a single source (only Flickr in this case) is that lesser-known species may have a low 
number of available photographs. In our study, photographs with flowers of Cratoxylum maingayi were contributed from 
only seven users, as opposed to 22 and 30 respectively for Cratoxylum cochinchinense and Cratoxylum formosum, which 
are more commonly planted for their ornamental value. A high number of user-differentiated images would increase the 
reliability of distinguishing species-specific flowering phenology events from the random flowering of individuals. To 
improve the diversity of users and photographs, other reliable platforms such as iNaturalist (https://www.inaturalist.org), 
which has both human-validated identifications and a public API to retrieve images and metadata, could be considered as 
additional sources of photographs in a further study. 
 
It is hoped that with this example workflow of how data can be gathered from natural history observations shared online 
in a public domain, the documentation of more of such observations can be encouraged for their potential usefulness in 
answering research questions. 
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