Description of *Metopograpsus cannicci*, new species, a pseudocryptic crab species from East Africa and the Western Indian Ocean (Decapoda: Brachyura: Grapsidae)

Gianna Innocenti¹, Christoph D. Schubart² & Sara Fratini³,⁴

Abstract. The Indo-Pacific genus *Metopograpsus* H. Milne Edwards, 1853, of the family Grapsidae (Decapoda: Brachyura: Thoracotremata) comprises six recognised species of intertidal crabs from sheltered rocky shores and mangrove forests. Recent molecular evidences suggest that *Metopograpsus thukuhar* (Owen, 1839) and *M. quadridentatus* Stimpson, 1858, could represent species complexes, each consisting of two species. Here we deal with *M. thukuhar* and its genetic separation into two clusters, one with all East African specimens, including samples from the Red Sea, Iran, and the Seychelles, and the other one comprising all the known specimens from Southeast Asia and Pacific islands. In this paper, we present new results of an in-depth morphological investigation of samples assigned to *M. thukuhar*, designate a neotype, and confirm the presence of an undescribed species by adding support from nuclear DNA comparisons. With respect to *M. thukuhar*, which was originally described from Hawaii, the new species corresponds to samples from the western Indian Ocean. The distinguishing morphological characters include differences in the shape of the first male gonopod. While the observed differences are relatively subtle, they nevertheless support the differentiation revealed by molecular findings. Therefore, we refer to the new species as a pseudocryptic taxon and name it *Metopograpsus cannicci*. The description of this new taxon elevates the species number within *Metopograpsus* to seven and adds another record to the list of newly described crabs from the Western Indian Ocean mangroves.

Key words. *Metopograpsus*, taxonomy, mitochondrial DNA, nuclear marker, pseudocryptic species

INTRODUCTION

At present, the genus *Metopograpsus* H. Milne Edwards, 1853 (belonging to Grapsidae MacLeay, 1838), consists of six recognised species, here listed in chronological order: *M. messor* (Forskål, 1775); *M. thukuhar* (Owen, 1839) (type species, selected by Holthuis, 1977); *M. oceanicus* (Hombron & Jacquinot, 1846 [in Hombron & Jacquinot, 1842–1854]); *M. latifrons* (White, 1847); *M. quadridentatus* Stimpson, 1858; and *M. frontalis* Miers, 1880. The lateral carapace margins of *M. oceanicus* and *M. quadridentatus* show a tooth behind the external orbital angles, while the other four species have entire lateral carapace margins (Banerjee, 1960). The males of the latter four species are characterised by species-specific first gonopods, which allow species identification of adult males (Tweedie, 1949).

In the past, the subdivision of the genus has been questioned by Tesch (1918), due to the apparent inconspicuous diagnostic morphological differences among species, particularly concerning *M. thukuhar* and *M. messor* (Ortmann, 1894: 702). However, their taxonomic separation was later supported by Tweedie (1949) and Banerjee (1960: 187, 188), based on newly recognised morphological characters. Recently, Fratini et al. (2018) published a molecular phylogenetic investigation which tested the taxonomic distinction of the six species of *Metopograpsus* across their respective distribution ranges and depicted the phylogeographic patterns within the widely distributed species. As a result, these authors indeed validated the monophyly of the six species of *Metopograpsus* in line with the partial analyses of Schubart (2011) and Ip et al. (2015). At the same time, this study recorded a high intraspecific mitochondrial genetic variation and possible phylogeographic patterns within the species *M. thukuhar* and *M. quadridentatus*. Consequently, the authors suggested the occurrence of distinct evolutionarily significant units within both species, possibly corresponding to undescribed species of *Metopograpsus* (see Fratini et al., 2018). This concerns the separation of *M. thukuhar* into two clusters, one including all the East African specimens together with samples from the Red Sea and Seychelles, and the other one comprising all the specimens from Southeast Asia and Pacific

The occurrence of M. thukuhar is often associated with mangrove swamps, and this species is able to climb mangrove roots (Fratini et al., 2000; 2005). It is an opportunistic feeder with good predatory abilities (Fratini et al., 2000) and is presently known from the Red Sea and East African coast (north of Mozambique) to Japan, Taiwan, China, Indonesia, Australia, New Caledonia, Solomon Islands, Vanuatu, Tahiti, and to the Hawaiian Islands (e.g., Crosnier, 1965; Sakai, 1976; Takeda & Numomura, 1976; Dai & Yang, 1991).

The present study builds on the results of Fratini et al. (2018) and performs an in-depth morphological investigation of the crabs identified as M. thukuhar from the Red Sea and East Africa to the Pacific Ocean, in particular from the type locality in Hawaii (Oahu; Owen, 1839), to verify the possible existence of two distinct species. In addition, sequences of the nuclear genome are compared for the first time within this genus in order to substantiate previous differences encountered among mitochondrial DNA sequences.

MATERIAL AND METHODS

Morphological analysis – material examined. In total, 75 specimens identified as Metopograpsus thukuhar were examined, including the synonymised taxa (M. eydousi H. Milne Edwards, 1853; M. intermedius H. Milne Edwards, 1853; Pachygrapsus parallelus Randall, 1840). When possible, these samples corresponded to those genetically analysed in Fratini et al. (2018). A total overlapping between the material analysed for this paper and that analysed by Fratini et al. (2018), however, was not possible mainly because genetic analyses were also based on sequences downloaded from GenBank. The specimens belong to the following museum collections: Natural History Museum of the University of Florence (Italy) (MZUF); Muséum national d’Histoire naturelle, Paris (MNHN); Zoological Reference Collection of the Lee Kong Chian Natural History Museum, National University of Singapore (ZRC); Natural History Museum, London (NHM); Academy of Natural Sciences of Drexel University, Philadelphia (ANSP). Photographs of the whole bodies and details were taken with a digital camera (Nikon D500 with micro-Nikkor 60 mm f. 2.8 lens). The specimens were examined and described using a stereomicroscope (Wild M7) and details of the male gonopods and female gonopores were examined with a photographic microscope (Leica M205 C). The type specimens of the new species are deposited in the Zoology Section of the Natural History Museum of the University of Florence (MZUF) (holotype and paratypes) and in the Zoological Reference Collection of the Lee Kong Chian Natural History Museum, National University of Singapore, Singapore (ZRC) (paratypes). The designated neotype of M. thukuhar also forms part of the collection of ZRC. The carapace width and length in millimetres are provided with the description of the examined material. The following abbreviations are used in the text: CW, carapace width; G1, main male gonopods.

Molecular analysis – construction of genotype network. The concept of genotype networks is often used to visualise genealogical relationships among and within species (Clement et al., 2000). For this purpose, a network of seven specimens covering the former range of M. thukuhar was created based on sequences of the 28S gene locus. As a first step, genomic DNA was isolated from muscle tissue of one walking leg of each animal with the Puregene method from Gentra Systems (Minneapolis, USA). Afterwards, polymerase chain reactions (PCR) took place targeting a relatively long (>1200 basepairs) DNA region of the nuclear 28S rRNA gene. This was achieved by combining the results of two primer combinations: 28L1 (5’-CGG AGG AAA AGA AAC CAA CAG-3’) with 28D2H (5’-TGA CTC GCA CAC ATG TTA GA-3’) (Mock & Schubart, in preparation) and 28D2L* (5’-TAC CGT GAG GGA AAG TTG AAA AG-3’) with 28H2 (5’-CGA TTT GCA GTG CAG AAT TGC T-3’) (Thiercelin & Schubart, 2014).

Table 1. Extraction number and origin of Metopograpsus specimens used for the reconstruction of a genotype network of M. thukuhar and M. cannicci, new species, based on the nuclear 28S locus (ZSMA, Zoologische Staatssammlung, Munich).

<table>
<thead>
<tr>
<th>No.</th>
<th>Species and extraction number</th>
<th>Origin</th>
<th>Collection number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M. cannicci, new species T520-1</td>
<td>Egypt, Nabq</td>
<td>ZSMA2019408</td>
</tr>
<tr>
<td>2</td>
<td>M. cannicci, new species T546-4</td>
<td>Iran, Bandar Abbas</td>
<td>ZSMA2019410</td>
</tr>
<tr>
<td>3</td>
<td>M. cannicci, new species T546-6</td>
<td>Iran, Bandar Abbas</td>
<td>ZSMA2019410</td>
</tr>
<tr>
<td>4</td>
<td>M. cannicci, new species T546-1</td>
<td>Iran, Bandar Abbas</td>
<td>ZSMA2019410</td>
</tr>
<tr>
<td>5</td>
<td>M. thukuhar S107</td>
<td>Malaysia, Sabah</td>
<td>ZRC 2000.1644</td>
</tr>
<tr>
<td>6</td>
<td>M. thukuhar R43-9</td>
<td>Hawaii, Oahu Kewalo</td>
<td>ZRC 2000.0564</td>
</tr>
<tr>
<td>7</td>
<td>M. thukuhar R43-13</td>
<td>Guam, Pago Beach</td>
<td>ZRC 2001.0730</td>
</tr>
</tbody>
</table>
Successfully amplified PCR products were outsourced to Macrogen Europe (The Netherlands) for sequencing. Aligned sequences of a length of 1286 basepairs (bp) were converted into a Nexus file that was subsequently used to infer the relationships among the individuals as a genotype TCS network with the software PopART v1.7 (Leigh & Bryant, 2015). This network reflects genetic distances as single mutation steps along the 1286 bp of the nuclear 28S gene among seven specimens, of which five belong to *M. cannicci*, new species (three from Iran and one from Egypt) and three to *M. thukuhar* (one each from Malaysia, Hawaii, and Guam) (Table 1).

RESULTS

Systematic Account

Order Decapoda Latreille, 1802

Family Grapsidae MacLeay, 1838

Metopograpsus H. Milne Edwards, 1853

Metopograpsus cannicci, new species

(Figs. 1A, 2A, 3A, 4A, 5A, 6)

Others. Egypt: 1 male (24.6 × 19.4 mm), 1 female (21.8 × 16.6 mm) (MZUF 5012), Egypt: Nabq, El Arwashie, colls. S. Fratini, G. Innocenti, S. Barbaresi & A. Conti, 15 October 2004; 1 male (18.9 × 14.0 mm) (MZUF 5013), Ras Mohammad, Mangrove channel, colls. S. Fratini, G. Innocenti, S. Barbaresi & A. Conti, 15 October 2004; 1 male (22.0 × 16.9 mm) (MZUF 2544), Mida Creek, coll. V. Vigiani, September 2000. Tanzania: 2 males (20.8 × 15.5 mm, 18.7 × 13.9 mm) (MZUF 5003), Pangane, Mucroco, Macomia, mangrove swamp, coll. F. Tarducci, 26 August 1995. Mozambique: 2 males (17.3 × 13.3 mm, 15.4 × 12.2 mm), 1 female (19.5 × 14.8 mm) (MZUF 2508, one chela for genetic analysis as MZUF 4866), Mozambique: Inhaca I., Saco da Inhaca, colls. S. Cannicci & F. Porri, July 1997. Seychelles: 1 male (16.9 × 13.3 mm) (MZUF 2980), Seychelles: Mahé, coll. S. Cannicci, December 2005; 2 males (25.6 × 19.5 mm, 20.0 × 15.9 mm) (MZUF 2934), Mahé, Port Launay, coll. S. Fratini, December 2005; 1 female (17.0 × 13.1 mm) (MZUF 2937), Mahé, Port Launay, coll. S. Fratini, December 2005. Rodrigues I.: 2 females (24.5 × 18.8 mm, 18.7 × 13.8 mm) (MZUF 5005), Melville, coll. M. Vannini, 1 July 1989. Mauritius I.: 2 females (24.5 × 18.8 mm, 18.7 × 13.8 mm) (MZUF 5005), Melville, coll. M. Vannini, 1 July 1989. Aldabra: 2 males (23.3 × 18.9 mm, 25.6 × 19.8 mm), 1 female (24.2 × 17.8 mm) (MZUF 5006), lagoon behind the headquarters, coll. M. Vannini, March 1979. Iran: 1 male (30.8 × 25.5 mm), 1 female (30.2 × 24.4 mm) (MZUF 5014), Bandar Abbas, behind the airport, coll. A. Shahdadi, 10 April 2013.

Comparative material examined. *Metopograpsus thukuhar* (Owen, 1839): Neotype (here designated), male (32.8 × 26.5 mm) (ZRC 2020.0219); Figs. 1B, 2B, 3B, 4B, 5B), Hawaii: Oahu, Kewalo, on sea wall, surf zone, Ala Moana area, Waikiki (ZRC 2020.0219). Scale bar = 10 mm. Photographs by S. Bambi.
Innocenti et al.: Metopograpsus cannicci, new species

Fig. 2. A, Metopograpsus cannicci, new species, holotype, male (MZUF 4865); B, Metopograpsus thukuhar (Owen, 1839), neotype, male (ZRC 2020.0219), detail of the suborbital tooth. Photographs by S. Bambi.

Wakiki, coll. P.K.L. Ng & S.H. Tan, 22 January 2000; 3 males (21.3 × 17.0 mm, 20.5 × 16.4 mm, 17.5 × 13.7 mm), 1 female (28.6 × 23.6 mm) (ZRC 2000.0405), Hawaii: Oahu, Kewalo, on sea wall, surf zone, Ala Moana area, Waikiki, coll. P.K.L. Ng & S.H. Tan, 22 January 2000; 1 male (20.3 × 16.4 mm) (NHM 1948.5.3.1), Sandwich Islands (= Hawaii): further collection data unknown; 1 male (22.1 × 18.5 mm), 2 females (21.8 × 17.6 mm; 20.5 × 16.9 mm) (NHM 1883.22), presented by the Hawaiian Government from the International Fisheries Exposition, 1883; 2 males (27.6 × 22.5 mm; 18.0 × 14.2 mm), 3 females (ovigerous: 22.6 × 17.9 mm; 17.2 × 13.1 mm; 13.4 × 10.8 mm) (NHM 1884.31), Hilo, coll. HMS Challenger; 1 female (ovigerous: 22.6 × 16.7 mm) (NHM not registered), Samoa: Upolu I., coll. Buxton & Hopkins, further collection data unknown; 1 male (22.0 × 17.9 mm) (NHM not registered), collection data unknown; 2 males (17.6 × 13.1 mm; 13.8 × 10.2 mm), 2 females (ovigerous: 19.4 × 15.00 mm; 15.2 × 11.9 mm) (NHM 1884.31), French Polynesia: Tahiti, near the reefs, coll. HMS Challenger, collection data unknown; 2 males (22.2 × 17.5 mm; 21.6 × 17.8 mm), 2 females (ovigerous: 23.0 × 18.2 mm; ovigerous: 15.1 × 10.9 mm; 12.5 × 9.5 mm) (NHM 1884.31), Tahiti, Papeete, coll. HMS Challenger, further collection data unknown; 1 male (13.5 × 10.0 mm) (NHM 1884.31), Fiji: Kandavu, coll. HMS Challenger; 1 male (18.5 × 15.2 mm) (MNHN-IU-2011-9039), Marquesas Islands: Nuku Hiva, Hakatea Cove, 8°56′6″S, 140°10′6.006″E, coll. Agence des Aires Marines Protégées, 28 January 2012. Metopograpsus eydouxi H. Milne Edwards, 1853: 1 male (20.2 × 15.2 mm) (MNHN-IU-2000-3547; Fig. 6), Sandwich Islands (= Hawaii), designated as lectotype by Ng et al. (2019: 114); 1 male (25.1 × 19.6 mm), 1 female (21.0 × 16.2 mm) (MNHN-IU-2000-3551, not types (Ng et al., 2019: 114)), Sandwich Islands (= Hawaii). Metopograpsus intermedius H. Milne Edwards, 1853: 1 male (23.1 × 16.8 mm) (MNHN-IU-2014-11210), unknown locality, designated as lectotype by Tweedie (1954: 128). Pachygrapsus parallelus Randall, 1840: Syntypes: 2 males (32.7 × 28.0 mm, 11.1 × 8.0 mm), 3 females (26.2 × 22.0 mm, 23.1 × 18.1 mm, 22.0 × 15.0 mm) (ANSP CA3545), Sandwich Islands (= Hawaii), colls. T. Nuttall & J.K. Townsend, before 1839.

Diagnosis. Carapace flat, quadrangular, slightly broader than long; branchial groove distinct, branchial region with distinct oblique ridges, urogastric grooves distinct, cardiac and intestinal regions smooth, without any ridge or tubercle. Lateral margins of the carapace entire. Front broad, more than half of greatest width of carapace, deflexed with rugose surface and crenulated free margin, 4 depressed post-frontal lobes along line of frontal deflexion. Suborbital tooth triangular, keeled from tip to base. Exposed surface of base of antenna densely pubescent. Chelipeds subequal, without obvious handedness, fingers stout with spooned tip. Ambulatory legs compressed and with broad merus, dorsal and ventral ridges of 3 distal joints bearing bristles, dactylus with spines. Third and fourth pereiopods with pubescence on lower border of base and ischium. Male pleon with 6 distinct segments, basal one as broad as thoracic sternum, somite 6 rectangular, telson triangular. G1 slender, straight, with twisted ridge along longitudinal axis, apical corneous process elongate.
Description. Small- to medium-sized crab (maximum observed CW 34.5 mm). Carapace almost quadrangular, slightly broader than long, greatest width just behind exorbital angles; surface smooth, with transverse ridges lined in rows on branchial region, urogastric grooves evident (Fig. 1A). Front 0.6 (± 0.02) times carapace width (N=6), quite deflexed, slightly concave medially. Post-frontal lobes evident, median ones slightly smaller than lateral ones in width and separated by furrow. Dorsal carapace regions moderately indicated, hepatic region demarcated, cardiac region separated from urogastric region, lateral branchial ridges evident, mid upper orbital border eyelet-shaped, lower orbital border granulate, anterolateral margin with sharp exorbital tooth, lateral margin weakly concave. Suborbital tooth triangular, distally crenulated, with central keel (Fig. 2A).

Male chelipeds subequal (51% with right enlarged; 49% with left enlarged, N=10) (Fig. 3A). Chela large (palm length 0.68 ± 0.05 times CW, N=3 males), robust (length/width ratio = 0.53 ± 0.02, N=3 males). Merus with grooves on dorsal border and with spines on inner (3 or 4) and upper (4 or 5) borders; ventral border crenulate; inner upper border of carpus with 3 small spines. Upper surface of palm in males with 3 or 4 transverse granulated lines; outer surface of palm smooth, along ventral border a hardly evident ridge crossing several (6 or 7) transverse ridges, ventral border coarsely granular until outer surface of fixed finger, centrally gently hollowed; inner surface of palm coarsely smooth except area facing carpus; length of cutting edge of fixed finger 0.39 ± 0.04 (N=3 males) times maximum propodus length. Dactylus relatively stout, slightly curving in dorsal view, length 0.57 ± 0.05 (N=3) times maximum propodus length. Fingers with chitinous spoon-shaped tips, with gape when closed. Cutting edge of both fingers with series of inconspicuous teeth. Female chelipeds smaller than in males, subequal as in males, ratio of palm length to carapace width ca. 0.60 in female paratype (MZUF 5008). Merus and carpus as in males, upper surface of palm with 3 or 4 transverse and sparse granules, inferior border of palm with line along its length and 4 lines of not relevant transverse ridges, both fingers with chitinous spoon-shaped tips.

Ambulatory legs relatively long, with broad merus (length/width ratio = 0.46 ± 0.01, N=11 males), flattened; fourth and fifth pereiopods longest (Fig. 1A). Edges of last three joints bearing bristles, dactylus with spines. Lower border of third and fourth base and ischium pubescent.

Male pleon triangular; telson triangular and slightly longer than somite 6. Somite 6, 1.60 ± 0.04 (N=3) times wider than...
In life, crabs are mottled brown-green and cream, and new species, by their G1, can be distinguished from the general shape of the G1 in *M. thukuhar* is distally more swollen, with a rounded hump and a shorter corneous tip (Fig. 4B). However, only fully adult specimens can be distinguished by their G1, as in males with CW < 23 mm such differences are not always marked (see Fig. 4C). Adult females of *M. cannici*, new species, have a trapezoidal sternal vulvar cover (Fig. 5A), while in female *M. thukuhar* the cover is wider and higher (Fig. 5B). The live colouration is also very variable between and within both species, thus not helping in possible identification. It is hypothesised that it probably depends upon the background on which the crabs thrive.

Owen’s (1839) original description of *Grapsus thukuhar*, based on a single specimen (without sex specification) collected from Oahu (Hawaii), provided diagnostic characters that are very common for all species of *Metopograpsus*: “Grapsus clypei lateribus striatis; humeris, ulnis, carpis interne spinosis; femoribus supra et subtus spinosis […] Color, fulvus brunneo-punctatissimus. Carapace quadrilateral, broadest in front; the sides slightly converging to the posterior angles, which are truncated. Rostrum very broad, inclined, supporting four prominences, of which the laterals are the largest. No teeth at the sides of the shell, but the anterior angles produced and acute; oblique lines over the branchial regions. Chelae equal, short, obtuse; humeri with two spines; carpi with one or two spines internally; manus slightly tuberculated at the upper part, the remainder smooth and mottled with purple. Claws compressed, the femora with two or three spines at their apices, the other joints hairy, the terminal ones armed with short brown spines, sprinkled over with minute brown spots, like the skin of *Sepia officinalis*” (Owen, 1839: 80). Unfortunately, the holotype was destroyed during the 1941 bombing of the Royal College of Surgeons (London, UK), where it was deposited (Sarah Pearson, personal communication).

Banerjee (1960: 174) reported the following diagnostic characters for *M. thukuhar*: “lateral margins of the carapace scarcely convergent backwards, upper surface of the base of the antenna densely pubescent, 6th segment of the male abdomen equal to or slightly longer than fifth, compressed finger-shaped chitinous projection present at the top of the male pleopod”. He also mentioned a blunt sub-orbital tooth, not keeled from tip to base, but this character was found to be extremely variable in the examined specimens, finding in many of them a central keel, as already pointed out by Vannini & Valmori (1981) in their remarks on specimens of *M. thukuhar* from Somalia. The specimens from Hawaii have an evident keel in the suborbital tooth too (Fig. 2B).

The male specimen from ZRC (Figs. 1B, 2B, 3B, 4B, 5B) is very similar to the specimen figured by Owen (1839: pl. 24, figs. 3, 3a), and it was collected from the same locality. Therefore, we decided to designate it as the neotype of *M. thukuhar* to stabilise its taxonomy, and to serve as the primary point for comparison with *M. cannici*, new species.

Three other names have been treated as synonyms of *Metopograpsus thukuhar* (Owen) by previous workers (e.g.,...

Fig. 7. *Metopograpsus cannicci*, new species, live male from Mida Creek mangrove forest (Kenya), July 2004, specimen not collected. Photograph by S. Cannicci.

Tweedie, 1949, 1954; Banerjee, 1960; Davie, 2002; Ng et al., 2008), viz. *Metopograpsus eydouxi* H. Milne Edwards, 1853 (type locality: Hawaii), *Metopograpsus intermedius* H. Milne Edwards, 1853 (type locality: unknown), and *Pachygrapsus parallelus* Randall, 1840 (type locality: Hawaii), and their type material have also been examined in this work. The description of *Pachygrapsus parallelus* by Randall (1840) is based on the external shape of the carapace, claws and legs with no mention of gonopods. The lectotype of *M. eydouxi* was selected and figured recently by Ng et al. (2019: 114, fig. 6F). The G1s of *M. eydouxi* and *P. parallelus* could not be observed, however, as the specimens have been dried and are very fragile. As for *Metopograpsus intermedius* H. Milne Edwards, 1853, Ng et al. (2019: 115, fig. 7B) reconstructed the intricate history of the type specimen as follows: Tweedie (1949) indicated that *Metopograpsus intermedius* H. Milne Edwards, 1853, was represented in the collection of the MNHN by two syntypes belonging to two distinct species; the smaller of them being a *M. thukuhar*, whereas the larger agreed with the description of *M. gracilipes* De Man, 1891, according to the examination of the G1 sketches by Isabella Gordon. Tweedie (1954) designated the smaller syntype as the lectotype of *M. intermedius*, in order to define *M. intermedius* as a junior synonym of *M. thukuhar* and to establish *M. gracilipes* (presently a synonym of *M. frontalis* Miers, 1880) as the valid name for the species represented by the larger co-type of *M. intermedius*. Figure 6 shows the neotype of *M. thukuhar* and compares it with Owen’s figure of *M. thukuhar*, and photographs of the types of *M. intermedius*, *M. eydouxi*, and *P. parallelus*.

Ecology. Within its geographical range, *M. cannicci*, new species, is often associated with mangrove forests. Among the specimens analysed in this study, the Red Sea crabs were collected among the pneumatophores of *Avicennia marina* shrubs, while all the other specimens were collected in marine creeks and fringing mangroves (Vannini & Valmori, 1981; Fratini et al., 2000). However, populations of *M. cannicci* are also known to colonise man-made structures in sheltered areas, such as harbours and vertical jetties, where they can be abundant on wooden and concrete vertical surfaces. In East Africa, *M. cannicci* colonises both the seaward fringe, where it can be found in sympathy with *M. messor* and *M.
Metopograpsus thukuhar; present paper); Iran (Naderloo, 2017, in both papers quoted as *M. thukuhar* & Türkay, 2012; Naderloo, 2017, in both papers quoted as *M. thukuhar*); Madagascar, Toliara and Toamasina (Vannini & Valmori, 1981, quoted as *M. thukuhar*); Mauritius (Michel, 1964, quoted as *M. thukuhar*); Mozambique, Seychelles; Dar es Salaam (Hartnoll, 1975, quoted as *M. thukuhar*); Maldives (Crosnier, 1965, quoted as *M. thukuhar*); Mauritius (Michel, 1964, quoted as *M. thukuhar*); Iran (Naderloo & Türkay, 2012; Naderloo, 2017, in both papers quoted as *M. thukuhar*; present paper).

Distribution. Red Sea, East African coast (from Somalia (Vannini & Valmori, 1981, quoted as *M. thukuhar*) to Mozambique), Seychelles; Dar es Salaam (Hartnoll, 1975, quoted as *M. thukuhar*); Madagascar, Toliara and Toamasina (Crosnier, 1965, quoted as *M. thukuhar*); Mauritius (Michel, 1964, quoted as *M. thukuhar*; present paper); Iran (Naderloo & Türkay, 2012; Naderloo, 2017, in both papers quoted as *M. thukuhar*; present paper).

Nuclear genetic evidence. The TCS genotype network (Fig. 8) shows the clustering of seven individuals of *Metopograpsus*, formerly treated as *M. thukuhar*, across three individual 28S genotypes. A genotype is here defined as a specific sequence of nucleotides within the 28S nuclear gene region and is visualised as a circle in Figure 8. Short transverse lines indicate the number of mutations separating the different genotypes. The most common genotype is shared by the four individuals from Iran and Egypt and is separated by two mutations from a second genotype comprising specimens from Guam and Malaysia. A third genotype is separated by one additional mutation from the latter ones and was found in a sample from Hawaii.

DISCUSSION

In this study, we were able to confirm what had been suggested based on mitochondrial DNA by Fratini et al. (2018), now providing morphological and nuclear DNA evidences that the former species *Metopograpsus thukuhar* consists of a complex of two pseudocryptic species, one of which is here described as *Metopograpsus cannicci*, new species.

The term pseudocryptic is hereby used in the sense of Ragionieri et al. (2012) and Fratini et al. (2019), i.e., minor morphological differences discovered, after recognising the genetic distinctness. With *M. cannicci*, new species, the number of species belonging to *Metopograpsus* increases to seven. Since the type specimen used by Owen (1839) for the description of *M. thukuhar* was from Hawaii, the original name remains associated to populations occurring in the eastern Indian and Pacific oceans, while *M. cannicci*, new species, refers to populations from the Red Sea, East Africa, western Indian Ocean islands, and the Persian Gulf.

We must assume that these two species do not occur in sympathy and their geographic distribution ranges are well separated. Geographic barriers are typically implicated as a likely driver of allopatric speciation of widely distributed intertidal marine species with planktonic larvae (see Keenan et al., 1998; Shih & Suzuki, 2008; Ragionieri et al., 2009; Lai et al., 2010, 2017; Shih et al., 2012). In this case, the two species are possibly isolated by the geographic break between the western Indian Ocean and the eastern Indian/Western Pacific Ocean, caused by the mid-Indian Ocean Oceanic Barrier, west of the Lakshadweep Maldives-Chagos archipelagos (see Borsa et al., 2016; Fratini et al., 2018).

While the two species are strongly differentiated at the mtDNA 12S and 16S gene level (with a genetic pairwise p-distance of 3.2 ± 0.5; Fratini et al., 2018), we found only minor morphological differences, mainly related to the shape of the first gonopod of adult males. Since these morphological differences were only discovered after Fratini et al. (2018) reported the genetic distinctness, we define these taxa as pseudocryptic species in line with the definitions provided by Ragionieri et al. (2012), Chu et al. (2015), and Fratini et al. (2019) for other brachyuran species.

Also the genetic differences recovered from the 28S gene are more subtle than the ones from the mitochondrial markers, despite the fact that all of these molecular markers correspond to ribosomal structural genes, which are characterised by an alternation of conserved (stems) and variable regions (loops) (e.g., Schubart et al., 2000). In the present case, the compared sequences encompass the loop regions defined as D2 and D3 of the 28S rRNA gene. Nevertheless, only two consistent differences can be found between the two studied species, which on the other hand appear to be reliable enough for their use in diagnostic species identification. The reduced genetic divergence of the 28S DNA compared to mitochondrial markers in thoracotreme crabs was recently also demonstrated in a genetic comparison of sesarmid species from East Africa (Cannicci et al., 2017: table 3).
ACKNOWLEDGEMENTS

Many thanks are due to Stefano Cannicci for collecting specimens, for reviewing the manuscript, and for his useful suggestions: for all these efforts and for honouring his research career on East African mangrove fauna we dedicated this species to him. Also, the help of Elisabeth Mock is greatly appreciated for carrying out the molecular analyses as part of her Bachelor thesis. Initially, both of these colleagues were included as co-authors, but as this paper involves the description of a new taxon, they kindly resigned from it upon advice from reviewers. We also wish to kindly thank Peter K. L. Ng and Jose C. E. Mendoza (National University of Singapore) for their constructive remarks and suggestions. Our thanks are extended to Marco Vannini, a valuable assistant during the preparation of the morphological description. We wish to thank Saulo Bambi for the photographs of the specimens studied in Florence, Laure Corbari and Paula Martin-Lefèvre (Muséum National d’Histoire Naturelle, Paris) for providing the useful photographs of the lectotype of Metopograpsus eydouxi, and Paul Callomon (Academy of Natural Sciences of Drexel University, Philadelphia) for the photographs of the syntypes of Pachygrapsus parallelus. We also thank Paul Clark and Miranda Lowe (Natural History Museum, London) for the loan of Metopograpsus thukahar, and Adnan Shahdadi for collecting and making available specimens from Iran.

LITERATURE CITED

Forskål P (1775) Descriptione animalium avium, amphibiorum, piscium, insectorum, vermium; quae in itinere orientali observavit Petrus Forskål. Post mortem auctoris edidit Carsten Niebuhr. Adjuncta est materia medica Kahirina atque tabula maris rubri geographicæ. Ex officina Mölleri, Haunzei [= Copenhaguen], 20 + XXXIV + 164 pp., 1 map.
MacLeay WS (1838) On the brachyurous decapod Crustacea brought from the Cape by Dr. Smith. In: MacLeay WS (ed.) Illustrations of the Zoology of South Africa; being a Portion of the Objects of Natural History Chiefly Collected during an Expedition into the Interior of South Africa, under the Direction of Dr. Andrew Smith, in the Years 1834, 1835, and 1836; Fitted out by “The Cape of Good Hope Association for Exploring Central Africa”. Smith, Elder & Co., London. Pp. 53–71.
Innocenti et al.: *Metopograpsus cannicci*, new species

Randall JW (1840) Catalogue of the Crustacea brought by Thomas Nuttall and JK Townsend, from the west coast of North America and the Sandwich Islands, with description of such species as are apparently new, among which are included several species of different localities, previously existing in the collection of the Academy. Journal of the Academy of Natural Science of Philadelphia, 1839: 106–147.

Shih H-T, Ng PKL, Wong KJH & Chan BKK (2012) *Gelasimus splendidus* Stimpson, 1858 (Crustacea: Brachyura: Ocypodidae), a valid species of fiddler crab from the northern South China Sea and Taiwan Strait. Zootaxa, 3490: 30–47.

