FOULING SPONGES (PORIFERA) ON NAVIGATION BUOYS FROM SINGAPORE WATERS

Swee-Cheng Lim
Tropical Marine Science Institute, National University of Singapore,
18 Kent Ridge Road, Singapore 119227, Republic of Singapore
Email: tmstsc@nus.edu.sg (Corresponding author)

Nicole J. de Voogd
National Museum of Natural History, Darwinweg 2, 2333 CR Leiden, The Netherlands
Email: voogd@naturalis.nnm.nl

Koh-Siang Tan
Tropical Marine Science Institute, National University of Singapore,
18 Kent Ridge Road, Singapore 119227, Republic of Singapore
Email: tmstanks@nus.edu.sg

ABSTRACT. – A total of 62 sponge species was identified from subtidal (0–2 m depth) marine fouling communities present on 30 navigation buoys in the Singapore and Johor Straits examined between 2003 and 2006. Of these sponges, eight were new records for Singapore. Systematic descriptions are given for the six most prevalent fouling sponge species, which occurred on at least nine buoys of a total of 30 buoys examined. These are: *Suberites diversicolor*, *Tethya robusta*, *Mycale (Carmia) sp. “red, encrusting”*, *Mycale (Zygomycale) parishi*, *Amorphinopsis excavans* and *Cladocroce sp. “massively encrusting”*. The number of sponges on any single buoy ranged between two and 23 species with between four and nine species seen on the majority of buoys examined. A large proportion (67%) of the fouling sponge species were rare, occurring on fewer than three buoys during the three-year study period. This is possibly due to the small surface area of the buoys. In the present study, only 19% (12 species) of specimens were identified to species level. A further 16% were tentatively assigned to known species, but these require comparison with type material for confirmation. The remaining 65% were assigned to genera and treated as operational taxonomic units (OTUs). An inventory of all fouling sponge species associated with navigation buoys in Singapore is also provided.

INTRODUCTION

Marine fouling communities are typically highly diverse and can comprise up to ten phyla represented by some 100 taxa (e.g., Godwin et al., 2004; Hewitt et al. 2004; Cohen et al., 2005). Sponges are a common component of marine fouling communities in many parts of the world (e.g. Esmero, 1978; Sutherland, 1981; Butler & Connolly, 1999; Connell & Glasby, 1999; Stachowitsch et al., 2002; Cohen et al., 2005), but are often conveniently ignored due to difficulties in taxonomy and lack of expertise. However, where expertise has been available, as many as 30 species of fouling sponges were reported from European waters (Sarà, 1974) and 25 species were recorded on artificial substrata at Cebu harbour in the Philippines (Esmero, 1978). Similarly, other studies have shown high diversity of fouling sponges in Hawaii (Godwin et al., 2004) and Australia (Hewitt et al. 2004).

Singapore has one of the busiest ports in the world (see Chou, 2006) and more than 100 navigation buoys are deployed to aid vessel traffic in the Singapore and Johor Straits. Marine fouling occurs worldwide, but it is most serious in the tropical waters. Navigation buoys are typically heavily
fouled within 2 years and their growth biomass can weigh up to 40kg/m² in wet weight (pers. obs.). Hence, sponges can comprise a significant proportion of the fouling biomass, but their species composition and their role in the development and persistence of the subtidal fouling community remain poorly understood. A major task in modern sponge biology is still to document the biodiversity of living species (Hooper & Van Soest, 2002). This is especially relevant in the Indo-Malayan region, which has an exceedingly rich sponge fauna (Van Soest, 1990; De Voogd & Van Soest, 2007) but where very little work has been done. Reviews by Van Soest (1989, 1990 & 1994) and Hooper et al. (2000) show that sponge biodiversity in Southeast Asia could be the highest in the world, with over 1500 species recorded in scientific literature (Hooper et al., 2000).

The sponge fauna in Singapore waters is likewise poorly known and records are few and fragmentary. *Cliona* (as *Spongia*) *patera* (Hardwicke, 1822) was the first sponge described from Singapore. In the late 1800s, *Leucostrongylia flexilis* (Haeckel, 1872), *Cinachyrella globulosa* (Gray, 1873), *Cinachyrella hemisphaerica* (Gray, 1873), *Coelocarteriasingaporensis* (Carter, 1883) and *Callyspongia* (*Cladochalina*) *diffusa* Ridley (1884) were described from specimens collected in Singapore. Dragnewitsch (1906) later recorded 24 sponge species from Tanjong Pagar and Pulau Brani in the Singapore Strait. Recent additions include observations from general biodiversity studies (Chuang, 1961, 1973, 1977; Chou & Wong, 1985) and sponge biochemistry (e.g. Pettit et al., 1996). Hooper et al. (2000) provided an annotated checklist of sponges of the South China Sea region and some 80 species from Singapore were listed, although many were identified only as Operational Taxonomic Units (OTUs). In addition, De Voogd and Cleary (2009, this volume) recorded some 80 sponge species from coral reefs in Singapore.

The present study provides a preliminary assessment of subtidal sponges occurring on navigation buoys. It is intended as a small step towards documenting and describing the fouling sponge fauna present in Singapore waters.

MATERIAL AND METHODS

Sponges were collected over four years between 2003 and 2006 from 30 navigation buoys in Singapore waters, comprising 20 buoys from the Singapore Strait and another ten buoys from the Johor Strait (Fig. 1). These five-ton buoys are lifted up and retrieved approximately every three years for cleaning and general servicing. The submerged surface of buoys varied between 14 to 23 m² and were up to 2 m deep in water. The service schedule allowed us direct access to living material. During each visit to the buoy depot, buoys were carefully examined for sponges. Specimens were photographed on site, and voucher specimens were collected and preserved in 70% ethanol. Sponges were examined and identified as far as possible to the highest taxonomic level. These were also compared with undetermined material in the Zoological Reference Collection (ZRC), Raffles Museum of Biodiversity Research, National University of Singapore. Six most common fouling sponges species (i.e., sponge species that appeared on at least 9 buoys of the total 30 buoys sampled) are described in detail below. Voucher specimens were deposited in ZRC (see Table 1 for museum reference numbers).

To examine skeletal architecture, paraffin-embedded sponge tissue was sectioned either by hand or by using a microtome. The sections were then cleared in either Histoclear™ or a phenol-xylene mixture and mounted in Dpex™ on glass slides. Spicule preparations were made on a glass slide by dissolving a small piece of the specimen in a few drops of concentrated nitric acid over an alcohol flame. These were mounted either in Dpex™ on glass slides for light microscopy or transferred onto brass stubs for scanning electron microscopy, following the methods described by Hooper (1997). Spicule size range was estimated by measuring 25 spicules from one specimen, (unless stated otherwise), and presented as lowest value range – mean – highest value range of length by lowest value range – mean – highest value range of width. The classification used here adheres to the current scheme described in *Systema Porifera* (Hooper & Van Soest, 2002).

RESULTS

A total of 62 sponge species (see Table 1) was identified, although many could not be named or identified to a known taxon and are named provisionally, here as operational taxonomic units (OTUs). Of these, two were calcareous sponges and the remaining were Demospongiae representing 9 orders, 22 families and 28 genera (Table 1). Of the 62 species, twelve (19%) were identified to species, a further nine (15%) were assigned to a known species (the species name is preceded by cf.) but still require confirmation of identification through comparison with type material. *Cladocroce aff. burapha* Putchakarn et al., 2004 was very similar to but differed slightly from the type, hence we have used the term ‘affinis’. The remaining 40 species (65%) were identified to genus. The number of sponge species on a single buoy ranged between two and 23 species. The most diverse order was Haplosclerida (30 species), followed by Poecilosclerida (11 species), Hadromerida (six species), Dictyoceratida (six species), Halichondrida (five species), Astrophorida (one species), Chondrosida (one species), Leucosolenida (one species) and Clathrinida (one species). *Haliclona* and *Callyspongia* species (order Haplosclerida) accounted for about half of the total fouling sponge species identified in this study.

Six species (9%) were common, found on at least nine buoys (i.e., 30% of the total number of buoys). The six prevalent fouling sponge species were *Mycale* (*Zygomycale*) *parishi* (Bowerbank, 1875), *Mycale* (*Carmia*) sp., *Cladocroce* sp. “massive, encrusting”, *Suberites diversicolor* Becking & Lim, 2009, *Tethya robusta* (Bowerbank, 1873) and *Amorphopinopsis excavans* Carter, 1887, in descending frequency of occurrence. These are described in detail in
the following section. Eight new records for Singapore were obtained in this study based on material from navigation buoys as well as those in the ZRC. These are indicated with an asterisk against the species in Table 1. Some 10 species, including the widely distributed Callyspongia (Cladochalina) diffusa Ridley, 1884, Mycale (Aegogropila) sulevoidea (Sollas, 1902), Prosuberites oleteira De Laubenfels, 1957, and Psammochela psammodes (Hentschel, 1911) were seen frequently (up to eight buoys) but the majority of the sponge species occurred on less than three buoys. For example, Chondrilla australiensis Carter, 1875 and Iotrochota baculifera Ridley, 1884, both very common and abundant in shallow-water reefs in Singapore (pers. obs.), occurred only once on navigational buoys over the period of sampling. Mycale (Zygomycale) parishi, Mycale (Carmia) sp., Tethya robusta and Amorphinopsis excavans were widely distributed on the buoys throughout the Johor and Singapore Straits. In contrast, Psammochela psammodes and the calcareous sponges (Leucetta sp. and Leucosolenia cf. flexilis) occurred only in the Singapore Strait. There seemed to be no sponge species that were confined to the Straits of Johor but Suberites diversicolor was common in the largely estuarine waters of Johor Strait and estuaries in the Singapore Strait near freshwater discharge. The fouling sponge fauna on buoys were visibly dominated by Mycale (Zygomycale) parishi in biomass (i.e., estimated visually) but members of the Haplosclerida was highest in species richness (30 species).

TAXONOMY

Phylum Porifera Grant, 1835
Class Demospongeae Sollas, 1885
Order Hadromerida Topsent, 1894
Suberitidae Schmidt, 1870
Suberites Nardo, 1833
Suberites diversicolor Becking & Lim, 2009
(Figs. 2A, 3A–B)

Material examined. – ZRC.POR.006, Singapore; Johor Strait, 1–2 m depth, 01°28.50'N, 103°48.31'E; 14 Jan 2004, coll. Lim, S.C.; ZRC.POR.0005, paratype of **Suberites diversicolor**, Singapore, Johor Strait, 0 m depth, 01°26'2.34" N, 104°02'54.31"E

Description. – Encrusting (Fig. 2A), sometimes with digitate projections of approximately 10 mm in length and 5 mm in diameter at the base. Living individuals has a wide range of colour: orange, red, purple, blue, green and gray; beige in ethanol. Oscules are less than 1 mm in diameter in the field, and generally not visible when out of water or after preservation. Texture firm, slightly compressible and elastic. Surface texture-micro hispid to velvety. The commensal barnacle, *Acasta dofleini*, was sometimes observed to inhabit this sponge species.
Table 1. Fouling sponges from Singapore waters.

<table>
<thead>
<tr>
<th>Class Demospongiae Sollas, 1885</th>
<th>ZRC Catalogue No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Astrophorida Sollas, 1888</td>
<td></td>
</tr>
<tr>
<td>Family Ancorinidae Schmidt, 1870</td>
<td></td>
</tr>
<tr>
<td>1. Stelletta sp. “yellow, spherical”</td>
<td>ZRC.POR.0017</td>
</tr>
<tr>
<td>Order Hadromerida Topsent, 1894</td>
<td></td>
</tr>
<tr>
<td>Family Clionaidae D’Orbigny, 1851</td>
<td></td>
</tr>
<tr>
<td>2. Cliona cf. celata Grant, 1826</td>
<td>ZRC.POR.0018</td>
</tr>
<tr>
<td>Family Suberitidae Schmidt, 1870</td>
<td></td>
</tr>
<tr>
<td>3. Prosuberites oleteira De Laubenfeld, 1957*</td>
<td>ZRC.POR.0019</td>
</tr>
<tr>
<td>4. Suberites diversicolor Becking & Lim, 2009</td>
<td>ZRC.POR.0006</td>
</tr>
<tr>
<td>Order Tethydidae Gray, 1848</td>
<td></td>
</tr>
<tr>
<td>5. Tethya cf. japonica Sollas, 1888</td>
<td>ZRC.POR.0020</td>
</tr>
<tr>
<td>6. Tethya robusta Bowerbank, 1873*</td>
<td>ZRC.POR.0007</td>
</tr>
<tr>
<td>7. Tethya sp. “violet”</td>
<td>ZRC.POR.0021</td>
</tr>
<tr>
<td>Order Chondrosida Boury-Esnault & Lopes, 1985</td>
<td></td>
</tr>
<tr>
<td>Family Chondrillidae Gray, 1872</td>
<td></td>
</tr>
<tr>
<td>8. Chondrilla australiensis Carter, 1873*</td>
<td>ZRC.POR.0022; +ZRC.1997</td>
</tr>
<tr>
<td>Order Poecilosclerida</td>
<td></td>
</tr>
<tr>
<td>Suborder Microcionina Hajdu, van Soest & Hooper, 1994</td>
<td></td>
</tr>
<tr>
<td>Family Microcionidae Carter, 1875</td>
<td></td>
</tr>
<tr>
<td>9. Clathria (Clathria) sp. “brown, thinly encrusting”</td>
<td>ZRC.POR.0023</td>
</tr>
<tr>
<td>10. Clathria (Microciona) mima (de Laubenfels, 1954)*</td>
<td>ZRC.POR.0024</td>
</tr>
<tr>
<td>Family Raspallidae Hentschel, 1923</td>
<td></td>
</tr>
<tr>
<td>11. Echinodictyum conulosum Kieschnick, 1900</td>
<td>ZRC.POR.0025</td>
</tr>
<tr>
<td>Suborder Myxillina Hajdu, van Soest & Hooper, 1994</td>
<td></td>
</tr>
<tr>
<td>Family Coelosphaeridae Dendy, 1922</td>
<td></td>
</tr>
<tr>
<td>12. Lissodendoryx (Lissodendoryx) sp. “encrusting”</td>
<td>ZRC.POR.0026</td>
</tr>
<tr>
<td>Family Tedaniidae Ridley & Dendy, 1886</td>
<td></td>
</tr>
<tr>
<td>Family Iotrochotidae Dendy, 1922</td>
<td></td>
</tr>
<tr>
<td>14. Iotrochota baculifera (Ridley, 1844)</td>
<td>ZRC.POR.0028</td>
</tr>
<tr>
<td>Family Myxillidae Dendy, 1922</td>
<td></td>
</tr>
<tr>
<td>15. Psammochela psammodes (Hentschel, 1911)*</td>
<td>ZRC.POR.0029</td>
</tr>
<tr>
<td>Suborder Mycalina Hajdu, van Soest & Hooper, 1994</td>
<td></td>
</tr>
<tr>
<td>Family Mycalidae Lundbeck, 1905</td>
<td></td>
</tr>
<tr>
<td>17. Mycale (Carmia) sp. “red, encrusting”</td>
<td>ZRC.POR.0008</td>
</tr>
<tr>
<td>18. Mycale (Parasperella) sp. “yellow, massive”</td>
<td>ZRC.POR.0031</td>
</tr>
<tr>
<td>19. Mycale (Zygomycale) parishi (Bowerbank, 1875)*</td>
<td>ZRC.POR.0009</td>
</tr>
<tr>
<td>Order Halichondrida Gray, 1867</td>
<td></td>
</tr>
<tr>
<td>Family Halichondridae Gray, 1867</td>
<td></td>
</tr>
<tr>
<td>20. Amorphinopsis excavans Carter, 1887*</td>
<td>ZRC.POR.0010</td>
</tr>
<tr>
<td>21. Amorphinopsis sp. “purple, big oscules”</td>
<td>ZRC.POR.0032</td>
</tr>
<tr>
<td>22. Halichondria sp. “blue, translucent, paper-like”</td>
<td>ZRC.POR.0033</td>
</tr>
<tr>
<td>23. Halichondria sp. “yellow-brown, encrusting”</td>
<td>ZRC.POR.0034</td>
</tr>
<tr>
<td>24. Halichondria sp. “brown, thin-walled fistules”</td>
<td>ZRC.POR.0035</td>
</tr>
<tr>
<td>Order Haplosclerida Topsent, 1928</td>
<td></td>
</tr>
<tr>
<td>Suborder Haplosclerina Topsent, 1928</td>
<td></td>
</tr>
<tr>
<td>Family Callyspongiidae de Laubenfels, 1936</td>
<td></td>
</tr>
<tr>
<td>Taxa</td>
<td>ZRC Catalogue No.</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>25. Callyspongia (Callyspongia) cf. communis (Carter, 1881)</td>
<td>ZRC.POR.0036</td>
</tr>
<tr>
<td>26. Callyspongia (Callyspongia) cf. globosa Pulizer-Finali, 1982</td>
<td>ZRC.POR.0037</td>
</tr>
<tr>
<td>27. Callyspongia (Callyspongia) sp. “yellow, repent”</td>
<td>ZRC.POR.0038</td>
</tr>
<tr>
<td>28. Callyspongia (Callyspongia) sp. “centrotylote oxea”</td>
<td>ZRC.POR.0039</td>
</tr>
<tr>
<td>29. Callyspongia (Cladochalina) diffusa (Ridley, 1884)</td>
<td>ZRC.POR.0041</td>
</tr>
<tr>
<td>30. Callyspongia (Cladochalina) sp. “brown, fistules with apical oscules”</td>
<td>ZRC.POR.0042</td>
</tr>
<tr>
<td>31. Callyspongia (Cladochalina) sp. “pale violet, irregularly-sized oscules”</td>
<td>ZRC.POR.0043</td>
</tr>
<tr>
<td>32. Callyspongia (Euplacella) sp. “yellow, repent”</td>
<td>ZRC.POR.0044</td>
</tr>
<tr>
<td>33. Callyspongia (Euplacella) sp. “centrotylote oxea”</td>
<td>ZRC.POR.0045</td>
</tr>
<tr>
<td>34. Callyspongia (Toxochalina) cf. folioides (Bowerbank, 1875)</td>
<td>ZRC.POR.0045</td>
</tr>
<tr>
<td>35. Chalinula sp. “purple, encrusting”</td>
<td>ZRC.POR.0046</td>
</tr>
<tr>
<td>36. Chalinula sp. “brown”</td>
<td>ZRC.POR.0047</td>
</tr>
<tr>
<td>37. Cladocroce aff. burapha Putchakarn et al., 2004</td>
<td>ZRC.POR.0048</td>
</tr>
<tr>
<td>38. Cladocroce sp. “massive, encrusting”</td>
<td>ZRC.POR.0049</td>
</tr>
<tr>
<td>39. Cladocroce sp. “purple, branching, repent”</td>
<td>ZRC.POR.0050</td>
</tr>
<tr>
<td>40. Cladocroce sp. “green, encrusting”</td>
<td>ZRC.POR.0051</td>
</tr>
<tr>
<td>41. Haliclona (Halichoclona) sp. “greyish-black, encrusting”</td>
<td>ZRC.POR.0052</td>
</tr>
<tr>
<td>42. Haliclona sp. “opaque pink”</td>
<td>ZRC.POR.0053</td>
</tr>
<tr>
<td>43. Haliclona sp. “yellow, irregular”</td>
<td>ZRC.POR.0054</td>
</tr>
<tr>
<td>44. Haliclona sp. “translucent pink, apical oscules”</td>
<td>ZRC.POR.0055</td>
</tr>
<tr>
<td>45. Haliclona sp. “pink, small stout fistule with apical oscules”</td>
<td>ZRC.POR.0056</td>
</tr>
<tr>
<td>46. Haliclona sp. “bright blue, thin-walled”</td>
<td>ZRC.POR.0057</td>
</tr>
<tr>
<td>47. Haliclona sp. “yellow, anastomsed short branches”</td>
<td>ZRC.POR.0058</td>
</tr>
<tr>
<td>48. Haliclona sp. “dark green, encrusting”</td>
<td>ZRC.POR.0059</td>
</tr>
<tr>
<td>49. Haliclona sp. “violet, irregular”</td>
<td>ZRC.POR.0060</td>
</tr>
<tr>
<td>50. Haliclona sp. “yellow, translucent, thinly encrusting”</td>
<td>ZRC.POR.0061</td>
</tr>
<tr>
<td>51. Haliclona sp. “black”</td>
<td>ZRC.POR.0062</td>
</tr>
<tr>
<td>52. Haliclona sp. “green, translucent”</td>
<td>ZRC.POR.0063</td>
</tr>
<tr>
<td>53. Haliclona sp. “violet, opaque”</td>
<td>ZRC.POR.0064</td>
</tr>
</tbody>
</table>

Family Chalinidae Gray, 1867

54. Gelliodes sp. “violet, massive” | ZRC.POR.0065 |

Order Dictyocerotida Minchin, 1900

Family Thorectidae Bergquist, 1978

55. Lendenfeldia cf. chondrodes (de Laubenfels, 1954) | ZRC.POR.0066 |

Family Dysideidae Gray, 1867

56. Dysidea sp. “yellow, repent” | ZRC.POR.0067 |

Family Darwinellidae Merckowsky, 1879

57. Lamellodysidea herbacea (Keller, 1889) |

Family Darwinellidae Bergquist, 1980

58. Cheleonalysilla cf. erectus (Row, 1911)* | ZRC.POR.0068 |

Family Dictyodendrillidae Bergquist, 1980

59. Darwinella sp. “pink” | ZRC.POR.0069 |

Class Calcarea Bowerbank, 1864

Order Clathrinida Hartman, 1958

Family Leucettidae de Laubenfels, 1936

61. Leucetta sp. “white” | ZRC.POR.0070 |

Order Leucosolenida Hartman, 1958

Family Leucosoleniidae Minchin, 1900

62. Leucosolenia cf. flexilis (Haeckel, 1872) | ZRC.POR.0071
Skeleton

Ectosomal skeleton consists of smaller tylostyles at the periphery directed outwards in palisade, carried by larger tylostyles. Tangential spicules are absent, and there is no recognizable cortex. The interior skeleton consists of densely packed tylostyles in vague tracts and/or in confusion. Peripheral choanosomal skeleton consists of closely packed diverging tracts about 70 µm in diameter, comprising tylostyles that are much larger than those forming the ectosomal skeleton (Fig. 3A). However, the tylostyles have a wide size range and the typical two size categories tylostyles found in *Suberites* species (see definition in Van Soest, 2002) are overlapping in this species.

Spicules

Only tylostyles (Fig. 3B) are present. These are straight, smooth, and sharply pointed. Size: 176–465.9–830 µm x 2.5–6.5–15 µm. Modified tylostyles include lobate and subterminal forms.

Remarks. *Suberites diversicolor* was described recently based on material from India, Vietnam, Indonesia and Northern Australia (Becking & Lim, 2009). The paratype material of *Suberites diversicolor* (ZRC.POR.0005) from Singapore intertidal shore was examined and found to conform to the fouling sponge material. We also examined *Suberites carnosus* reported by Pulitzer-Finali (1993; 1996) from Kenya and New Guinea and this species has a similar spiculation and skeletal structure as *S. carnosus*. However, *S. carnosus* (Johnston, 1842) was originally described from Britain. It is very probable that the Kenyan *S. carnosus* is not conspecific with the British *S. carnosus*. In addition, it has a wider spicule size range of 180–820 µm compared to the British *S. carnosus*, which has a substantially narrower tylostyles size range of 330–410–500 µm (Van Soest et al. 2000; Picton et al., 2007). Only spicule dimensions were given by Pulitzer-Finali (1993 & 1996). The material from Kenya and New Guinea available at MSNG (Museo Civico di Storia Naturale ‘Giacomo Doria’, Genoa, Italy) was unfortunately insufficient to give a good idea of the habit. Hence we were unable to determine if these specimens are conspecific with *S. diversicolor*. It would be interesting to look at molecular data to determine if they are the same species, or alternatively, part of a species complex.

Description. – Shape spherical, hemi-spherical or globose (Fig. 2B), up to 5 cm in diameter, with numerous rooting processes attaching it to the substratum, seen in almost all the specimens found on buoys. Live external colour yellow, pink or red, turning pale or beige after preservation in ethanol. Cortex is yellowish-brown to pale orange, also turning pale or beige in ethanol. Oscules are not visible to the naked eye in the field when out of water or preserved. Texture is very firm, difficult to tear, but slightly compressible. Surface covered with numerous rounded tubercles 1–2 mm in diameter and 0.5–1.5 mm in height. Buds are often present.

Skeleton

Main megascleres bundle (Fig. 4A) 250–500 µm in diameter radiates through the choanosome, expanding slightly in the cortex but not branched into secondary tracts. Interstitial megascleres are present between the main bundles and a high density of megasters is usually present throughout the cortex. Smaller megasters are in the peripheral choanosome and a dense micraster crust is evident on the surface. Tylasters and oxyasters are both scattered throughout the choanosome. The thickness of the cortex (without tubercles) ranges between 2–3 mm. Cortical lacunae are absent.

Spicules

The megascleres are strongyloxeaes (Fig. 4B) ranging between 700 and 2125 µm in length and 5–40 µm in width. The megasters are spherasters (Fig. 4C) with diameters between 60 to 90 µm and R/C = 0.3–0.5, the smaller size spherasters are found in the outer choanosome. In the cortex, micrasters are tylasters (Fig. 4D) 10–12.5 µm in diameter. In the choanosome, in addition to the tylasters similar to the cortical ones, oxyasters (Fig. 4E) are present. Some of these are spiny with forked tips, 12.5–35 µm in diameter.

Remarks. – *Tethya robusta* can reach a relatively large size, up to 5 cm in diameter. This species can easily be distinguished from other *Tethya* species in the Indo-Pacific by its external morphology and spiculation (Sarà & Sarà, 2004). It is characterized by its spherical or subspherical shape and rounded, uniformly distributed distinct tubercles on its surface, with large strongyloxeaes more than 2000 µm in length. A dense distribution of spherasters and tylasters occurs in the cortex. Spherasters are large, ranging between 70–90 µm in diameter, R/C is generally 0.3–0.5. Oxyasters and tylasters are present in the choanosome. Microoxyospherasters, 4–5 µm in diameter, could not be verified in the buoy material. They are too small to be determined with certainty under the light microscope and they very rarely appear in spicule preparations for SEM. *Tethya robusta* is very similar in shape and spiculation to *T. ingalli* but *T. robusta* lacks the elaborate tertiary megascleres tracts that characterize *T. ingalli*. *Tethya robusta* also has larger megascleres greater than 2000 µm in length, larger spherasters of 60–100 µm in diameter, smaller spherasters R/C of less than 0.6, and has more rays (usually more than 20 rays) than *T. ingalli*. *Tethya japonica* Sollas, 1888, was also present on buoys but it can be distinguished from *T. robusta* and *T. ingalli* by the absence of oxyasters. A widely distributed species *Tethya seychellensis* (Wright,
Tethya seychellensis is essentially distinguished by its having compact cortical spiny tylasters with reduced ray number, and very large choanosomal oxyasters with forked, flexuous and sometimes apically spined long rays (Sarà & Sarà, 2004).

Order Poecilosclerida Topsent, 1867
Suborder Mycalina Hadju, Van Soest & Hooper, 1994

Mycalidae Lundbeck, 1905

Mycale Gray, 1867
Subgenus Carmia Gray, 1867

Mycale (Carmia) sp. “red, encrusting” (Figs. 2C, 5A–D)

1881) was not found on buoys, although it is present on sedimented intertidal areas in Singapore (S. C. Lim, pers. obs.). Tethya seychellensis is essentially distinguished by its having compact cortical spiny tylasters with reduced ray number, and very large choanosomal oxyasters with forked, flexuous and sometimes apically spined long rays (Sarà & Sarà, 2004).
Fig. 3. *Suberites diversicolor* Becking & Lim, 2009: A, transverse section of skeleton; B, tylostyle. Scale bars: A, 150 µm; B, 70 µm.

Material examined. – ZRC.POR.0008, Singapore; Johor Strait, 01°20.52’N, 103°37.84’E; 17 Nov.2006.

17 Nov.2006. Description. – Thinly encrusting, ranging between 2 and 10 mm in thickness and up to 30 x 30 cm in surface area (Fig. 2C). Live colour varies from orange to red, beige in ethanol. Oscules are not visible when out of water or when preserved. Texture soft, compressible and fragile. Surface smooth.

Skeleton

Choanosomal skeleton consists of wispy, plumose bundles of megascleres that have little or no cohesion (Fig. 5A). A coherent ectsosomal skeleton is absent.

Spicules

Mycalostyles (Fig. 5B) of a single size category, straight or slightly curved: size 200–240–275 µm x 5–5.4–6 µm. Palmate aniscochelae (Fig. 5C) of single size category, 12.5–20 µm C-sigma (Fig. 5D) of single size category, smooth: size 27.5–32.4–35 µm.

Remarks. – This species is a very abundant, widespread component of the fouling fauna in Singapore waters. It was present on 25 of the 30 buoys from both Singapore and Johor Straits. This species seems to be a part of the complex of orange-red thinly encrusting *Mycale (Carmia)* species (see Van Soest, 1982) found in different parts of the world that possess a single category of palmate...
Fig. 4. *Tethya robusta* (Bowerbank, 1873): A, transverse section of skeleton; B, strongyloxea; C, spheraster; D, tylaster; E, oxyaster. Scale bars: 10 mm. Scales bars: A, 300 µm; B, 150 µm; C, 20 µm; D, 2 µm; E, 10 mm.

Fig. 5. *Mycale* (*Carmia*) sp. “red, encrusting”: A, transverse section of skeleton; B, mycalostyle; C, palmate anisochelae; D, sigma. Scale bars: A, 200 µm; B, 20 µm; C, 2.5 µm; D, 10 µm.

Anisochelae and sigmas. The species-complex includes *M. (C.) microsigmatosa* (Arndt, 1927) from the Caribbean, *M. (C.) sanguinea* (Tsumamal, 1969) in the Mediterranean, *M. (C.) senegalensis* Lévi, 1952 in West Africa and *M. (C.) lissochela* Bergquist, 1965 in the West Pacific Ocean. The Eastern Pacific species *Mycale (Carmia) cecilia* De Laubenfels, 1936 occurring in the Pacific side of Panama is also similar in spiculation and structure to the species here but differs in that it is bright green and red-speckled. However in a later study, De Laubenfels (1950) found *M. (C.) cecilia* yellow, pale orange, pink to lavender in Kaneohe Bay, Hawaii. *Mycale (Carmia) cecilia* was recently reported by Cruz-Barrara & Carballo (2008) to be growing over corals in the East Pacific. More work is needed to resolve the species complex comprising these orange-red, thinly encrusting *Mycale (Carmia)* species, with the possibilities that they might either be widely distributed introduced species in major ports, carried by ship hulls and bilge water, or morphologically conservative but genetically distinct regional faunas.

Mycale Gray, 1867

Subgenus *Zygomycale* Topsent, 1929

Mycale (Zygomycale) parishi (Bowerbank, 1875)

(Figs. 2D, 6A–G)
Raphidoesma parishii Bowerbank, 1875: 283
Esperella parishii Ridley & Dendy, 1887: 65

Material examined. – ZRC.POR.0009, Singapore; Singapore Strait, 01°14.68'N, 103°52.18'E; 21 Jun. 2003.

Description. – Usually encrusting (Fig. 2D), 5 to 25 mm in thickness and occupying up to 30 cm x 30 cm in area. Arboreal and branching forms were observed in several specimens. Two colour morphs, reddish orange and purplish blue, are observed. Both turned beige in ethanol. Oscules are not visible when out of water or when preserved. Texture is firm, compressible and resilient. Surface uneven due to projecting choanosomal spicule tracts.

Skeleton
Choanosomal skeleton consists of irregular plumoreticulate multispiracular tracts (Fig. 6A), 20–50 µm in diameter. Mycalostyles are of a single category. Ectosomal skeleton consists of a dense tangential reticulation or intercrossing of mycalostyles in tracts (Fig. 6B).

Spicules
Mycalostyles (Fig. 6C) of a single size category, straight but often slightly curved: size 280–306.4–340 µm x 7.5–9.2–10 µm. Toxas (Fig. 6D) smooth, width not proportional to length, size 17.5–56.1–90 µm x 0.25–1.5–2.5 µm. Palmate anisochelae (Fig. 6E) of two size categories: 1) 47.5–51.8–55 µm and 2) 17.5–19.75–20 µm. Palmate isochelae (Fig. 6F), 10–11.13–12.5 µm. C-sigma (Fig. 6G), smooth in three size categories: 1) 12–13.6–15 µm (n=15), 2) 22.5–26.3–32.5 µm and 3) 77.5–81.25–85 µm. Raphides, straight, smooth: 32.5–35.6–37.5 µm x 1 µm.

Remarks. – Singapore specimens can be easily identified with the type description of Mycale (Zygomycale) parishii Bowerbank (1875) with the exception of the presence of raphides (32.5–37.5 µm) in trichodragmas observed in specimens examined from buoys but not mentioned by Bowerbank. However, type material (BMNH 1877.5.21.2113) has abundant raphides, size 30–35.7–42.5 µm. Ridley (1884) made similar observations in the type specimen and many subsequently recorded specimens from elsewhere in Indo-Pacific. There are only two valid species in this subgenus (Van Soest et al., 2008); the other species is the bluish ramose M. (Z.) angulosa (Duchassaing & Michelotti, 1864) from the Atlantic Ocean. Mycale (Zygomycale) parishii has very similar spiculation to that of M. (Z.) angulosa sensu Van Soest (1984). Only colour appears to differentiate the two species: M. (Z.) parishii is grey-brown according to Bowerbank (1875) whilst M. (Z.) angulosa is blue (Van Soest & Hadju, 2002). It is generally agreed that M. (Z.) parishii only occurs in the Indo-Pacific and M. (Z.) angulosa in the Atlantic.

Order Halichondrida Gray, 1867
Halichondriidae Gray, 1867

Amorphinopsis excavans Carter, 1887
(Figs. 2E, 7A–D)

Amorphinopsis excavans Carter, 1887: 77, pl.5, figs 12–15.
– Hooper et al., 1997: 25, figs 15–16.
Amorphinopsis excavans digitifera Annandale, 1915: 467, fig. 4A.
Amorphinopsis excavans robinsonii Annandale, 1918: 198, pl. II, fig. 3; pl. IX, fig. 1

Material examined. – ZRC.POR.0010, Singapore, Johor Strait, 01°23.676'N, 103°59.936'E; 9 December 2004.

Description. – Encrusting (Fig. 2E), up to 10 x 5 x 3 cm (length x width x thickness) in size. Specimens found on the interior of buoys not exposed to sunlight were bright yellow, whilst those on exterior surfaces exposed to sunlight were dark greyish-green with or without a yellow tinge. Both turn beige in ethanol. Oscules are not visible to the naked eye when out of water or after preservation. Texture is firm but compressible. Specimens become fragile and friable when dried. Surface is opaque, usually smooth but some parts can be convoluted.

Skeleton
The ectosomal tangential skeleton (Fig. 7A), which peels easily, consists of vague, intercrossing tracts of oxeas and styles. Small styles are oriented paratangential to “echinating” and protrude through the surface. Collagen sparse. Choanosomal skeleton (Fig. 7B) tightly packed, confused, with vague, irregular tracts of spicules bound together with very little collagenous spongin producing elongated and oval cavities throughout the skeleton. Towards the periphery, spicules tracts become more paratangential. No significant size differences of the spicules were observed for both oxeas and styles at the surface and the choanosomal skeleton.

Spicules
Oxeas (Fig. 7C) of a single size category, smooth, straight or slightly curved; size 260–636–980 µm x 5–14.7–25 µm. Styles (Fig. 7D) smooth, straight or slightly curved; size 160–212–350 µm x 5–5.2–7 µm.

Remarks. – Approximately 14 Amorphinopsis species have so far been described from the Indo-Pacific. The specimens from Singapore best fit the description of Amorphinopsis excavans given by Hooper et al. (1997). Attempts to locate type material at BMNH were not successful. However, a holotype (slide) BMNH 1981.10.14.3 of A. excavans is described in the Systema Porifera and the type specimen is supposedly in the Indian Museum at Calcutta (Erpenbeck & Van Soest, 2002). To limit the discussion, only species with a similar encrusting habit are discussed. Amorphinopsis
sacciformis (Thiele, 1903) described from Ternate, Indonesia, differs from *A. excavans* in having two categories of oxeas and whose size can be up to 1105 µm x 35 µm (Hooper et al., 1997), much larger than those of *A. excavans*. *Amorphinopsis reptans* (Kirkpatrick, 1903) described from South Africa differs from *A. excavans* in having a growth form with narrow sharp-edged ligulate bands averaging about 1 mm in diameter, branching and occasionally anastomosing to form an incomplete reticulate pattern. *Amorphinopsis maza* (De Laubenfels, 1954) described from Micronesia differs from *A. excavans* in having larger styles of size 540 µm x 12 µm and big oscula that are 5 mm in diameter. *Amorphinopsis subaceratus* (Ridley & Dendy, 1886) described from the Philippines differs from *A. excavans* in having irregular anastomosing trabeculae and larger oxea size of 1200 x 31µm. Similarly, *Amorphinopsis siamensis* (Topsent, 1925) described from Thailand has anastomosing branches that are between 3–20 mm in thickness and larger oxea up to 980 x 40 µm. *Amorphinopsis foetida* (Dendy, 1889) described from India has low volcano-shaped fistules with large oscules up to 8 mm in diameter and long, slender styles, 448–609.8–794 µm x 8–16.4–23 µm (Hooper et al., 1997), which clearly differ from *A. excavans*. The morphology and skeletal features of *Amorphinopsis papillata* (Baer, 1906) described from Polynesia are very similar to *A. excavans*. While the oxeas are slightly larger, the size of styles in the type material (between 200–220 µm in length) is similar to *A. excavans*. Amorphinopsis papillata might be therefore conspecific with *A. excavans* but more work is required to ascertain their status.

The description of *A. rudis* (Bowerbank, 1875) is very brief, incomplete and spicule measurements were not provided. However, the description suggests that the sponge belongs
to the genus *Amorphinopsis*, supporting Van Soest et al. (2008) decision to place it there, but a slide from the type material, BMNH 1877.5.12.1347, contains onychaetes (size 255–355µm x 2.6–6.0µm), styles (size 240–345 x 7.5–12.5) and rare micro-spined tylotes (240–270µm x 4–5µm) refuting this conclusion. Oxeas are absent but Bowerbank could have mistaken the onychaetes for oxeas. The presence of onychaetes and styles would place *Isodictya rudis* in the genus *Tedania*.

Order Haplosclerida Topsent, 1928

Chalinidae Gray, 1867

Cladocroce Topsent, 1892

Cladocroce sp. “massive, encrusting”
(Figs. 2F, 8A–B)

Description. – Massively encrusting, occupying up to 25 x 25 cm in area, with numerous mounds and/or fistules (Fig. 2F), height 5–25 mm. Oscules always at the terminal end of mounds or fistules, diameter 3–10 mm. Live colour white tinged with pink, green and/or violet, turning pale white in ethanol. Texture firm, crumbly and fragile. Surface smooth. An anastomosing network of spicule tracts is visible just below the surface.

Skeleton

Choanosomal network is an isotropic reticulation of free spicules, reinforced by an irregular network of multispicular fibres or tracts (Fig. 8A) that occasionally anastomose. There are numerous free oxeas. Ectosomal skeleton is a multilayered compact crust with a single layer of tangential, unispicular, isotropic, reticulated oxeas above an anastomosing, subdermal multispicular tract (Fig. 8B).

Spicules

Oxeas of two size categories, often curved: (a) size 162.5–173.5–185 µm x 6–8.6–10 µm, and (b) 137.5–155.1–170 µm x 2.5–3.5–5 µm. The thinner and slightly shorter oxeas are less abundant. There is some overlap in the length of the two categories of oxeas but not in thickness. The smaller oxeas seldom exceed 5 µm in thickness while the oxeas in the larger category are seldom less than 6 µm in thickness.

Remarks. – The material described above best fits the definition of the genus *Cladocroce* as redefined by De Weerdt (2002), i.e., members of the Chalinidae which have their choanosomal skeleton reinforced by multispicular primary tracts that occasionally anastomose with rather dense, subsisotropic, paucispicular reticulation in between. *Cladocroce burapha* Putchakarn, De Weerdt, Sonchaeng & Van Soest, 2004 (paratype, ZMA Por. 17921) is very similar to examined material in skeletal structure and both species fit the definition of *Cladocroce* by De Weerdt (2002). However, the two species differ in growth form and spicule size, *C. burapha* being tubulo-ramose whilst the buoy specimens are massively encrusting. *Cladocroce burapha* also has smaller oxeas that are between 107–117

Fig. 7. *Amorphinopsis excavans* Carter, 1887: A, ectosomal tangential skeleton, top view; B, Transverse section of choanosomal skeleton (arrow indicates the surface); C, oxea; D, style. Scale bars: A, 150 µm; B, 300 µm; C, 75 µm; D, 30 µm.
µm in length while the current material has oxeas that are 137–185 µm in length. We refrain from describing this as a new species of *Cladocroce* as its allocation here is still equivocal.

Cladocroce is a poorly known genus compared to other members of the Chalinidae (De Weerdt, 2002), with only eight species described from deep water including the type species, and three species from shallow-water habitats. All eight deep-water species are lamellate or spathiform. *Cladocroce ventilabrum* (Fristedt, 1887) (512 m), *C. fibrosa* (Topsent, 1890) (1300 m), *C. parenchyma* (Lundbeck, 1902) (2304 m), *C. spatula* (Lundbeck, 1902) (100 m), *C. spathiformis* Topsent, 1904 (1165 m), *C. gaussiana* (Hentschel, 1914) (350 m), *C. osculosa* Topsent, 1927 (310-749 m) and *C. incurvata* Levi & Levi, 1983 (170 m). However, all three shallow-water species, namely *C. aculeata* Pulitzer-Finali, 1982, *C. tubulosa* Pulitzer-Finali, 1993 and *C. burapha* Putchakarn et al., 2004, are somewhat tubular in form and do not exhibit lamellate or spathiform morphology. The limits of the genus *Cladocroce* may best be confined to sponges that are lamellate or spathiform in form that occur in deep water (more than 100 m depth). However, based on the current classification, *Cladocroce* seems to be the best provisional genus allocation for current material.

DISCUSSION

This first inventory of fouling sponges in Singapore comprises a total of 62 species, possibly the highest number recorded so far for any tropical subtidal fouling community. The high diversity of sponges that can colonize and persist on a smooth, artificial substratum with a surface area of approximately 20 m² in area submerged in shallow water at two to three meters depth, is remarkable. Up to 23 sponge species were recorded on a single buoy in the Singapore Strait. By comparison, Esmero (1978) recorded 25 sponge species at Cebu Harbour in the Philippines that focused on sponge fauna on artificial substrata. Interestingly, none of the fouling sponge species recorded in Philippines were found in this study. In a study of the fouling community on buoys in the South China Sea, only one species of sponge, *Mycale adhaerens*, was recorded from seven buoys (Huang & Lin, 1993) and 12 sponge species from a ships hull in Hawaii (Godwin et al., 2004). Fouling sponge species richness on buoys is expectedly lower than those in natural habitats comprising different kinds of substrata such as rock, gravel, sand, mud and coral rubble. De Voogd & Cleary (2009, this volume) recorded 82 sponge species from coral reefs in Singapore waters in a much shorter collection period compared to this study. Species composition of sponges on natural and artificial substrata appears to be markedly different (Lim et al, in prep.).

Some 65% of our sponges could only be determined to genus level, reflecting the poor state of sponge taxonomy in this tropical region characterized by high diversity and compounded by the difficulty of identifying sponges with certainty to species level. As such, the sponge fauna in Southeast Asia is probably the least documented fauna among marine organisms (Hooper et al., 2000). Identifying largely encrusting and cryptic sponges on these buoys is made more difficult as even less work has been done on sponge fauna inhabiting artificial substrata. Some of these fouling specimens may be juveniles whose characteristic growth forms of adult sponges living on adjacent reefs have not yet been achieved, making identification even more challenging. It is also interesting to note that sponges from the highly speciose genera *Haliclona* and *Callyspongia* (Haplosclerida) accounted for nearly half of the total fouling sponge species recorded. This high proportion of *Haliclona* and *Callyspongia* species contrasts markedly from sponge assemblages elsewhere in the Indo-West Pacific. For example, *Haliclona* and *Callyspongia* only accounted for about 10% of the sponge fauna diversity in the Mariana Islands (Kelly et al., 2003), coral reefs in Mo Ko Thale Tai National Park in Thailand (Putchakarn, 2007) and, significantly, coral reefs in Singapore waters (De Voogd & Cleary, 2009, this volume). Such disparity could be attributed to cryptic and encrusting species of *Haliclona* and *Callyspongia* that may have been overlooked in the sponge faunas on natural habitats. There may also be biological

![Fig. 8. Cladocroce sp. “massive, encrusting”: A, transverse section of skeleton; B, tangential skeleton. Scale bars: 175 µm.](image-url)
reasons why species in these genera are predominant in the fouling fauna, such as faster growth rates. These casual explanations are presently unsubstantiated and certainly require further investigation.

Eight new records (as indicated by an asterisk against each species in Table 1) are reported for the first time from Singapore based on material from navigation buoys, supplemented by material previously deposited in the Zoological Reference Collection (ZRC). These species were not recorded, notably by Hooper et al. (2000) from their short survey of Singapore subtidal reefs in 1997. However, the eight species all appear to have a tropical Indo-Pacific distribution. *Tethya robusta* has been reported from Australia (Bowerbank, 1973), Seychelles (Thomas, 1973) and Hong Kong (Van Soest, 1982); *Clathria (Microciona) mima* from the West Pacific (De Laubenfels, 1954) and Australia (Hooper, 1996); *Mycale (Zygomycale) parishi* from peninsular Malaysia (Bowerbank, 1875), Hawaii (Bergquist, 1967), Seychelles (Thomas, 1973) and Australia (Hooper & Wiedenmayer, 1994); *Amorphinopsis excavans* from Myanmar (Carter, 1887), Seychelles (Thomas, 1973) and Australia (Hooper et al., 1997); *Chondrilla aurantiensis* from Australia (Carter, 1873), the Red Sea (Keller, 1891 as *C. globulifera*), Madagascar (Vacelet & Vasseur, 1971) and Seychelles (Thomas, 1973). *Prosuberites oleteira* (described from Hawaii by De Laubenfels, 1957) and *Psamnochela psammodes* (described from Western Australia by Hentschel, 1911) are reported for the first time from Southeast Asia. *Mycale (Aegogropila) sulfioidea* is also reported from Singapore for the first time since its description by Sollas (1902) from peninsular Malaysia.

Mycale (Zygomycale) parishi was the most common fouling sponge species on navigation buoys, being present in over 73% of the buoys examined. *Mycale (Carmia) sp.* was the second most common fouling sponge on navigation buoys, occurring on 70% of the buoys. *Cladocroce sp.* “massively encrusting”, *Suberites diversicolor*, *Tethya robusta* and *Amorphinopsis excavans* occurred on some 30% to 40% of the buoys examined while the majority of sponge species (76%) occurred on less than three buoys. Many were only collected once, e.g., *Chondrilla aurantiensis* Carter, 1873 and *Callyspongia (Toxochalina) cf. folioides* (Bowerbank, 1875). *Chondrilla aurantiensis* is one of the most common and abundant sponge species in intertidal and shallow water habitats around Singapore (Lim et al., 2008) but, surprisingly, it was only found once on navigational buoys.

Although we can reasonably expect the sponge fauna assemblage to be dissimilar in the Singapore and Johor Straits as they have different physical and chemical characteristics (see Chan et al., 2006; Gin et al., 2006), all six common fouling sponge species were distributed across the two water bodies, as were many other less common sponge species.

As one of the busiest ports in the world, Singapore is both a likely recipient as well as donor of species from and to other biogeographic regions. The transport of organisms on ship hulls and in ballast water through commercial shipping activities typically result in port environments becoming major points of biological invasions (Carlton, 1996; Hewitt, 2002 and Hewitt et al., 2004). A well-known example of a marine invasion in Singapore is the Caribbean false mussel *Miytlopsis sallei* (see Tan & Morton, 2006).

Introduced sponge species are more likely to settle on new and artificial substrata such as buoys, pontoons and pilings than on mature natural habitats (e.g. Bergquist, 1967; Kelly et al., 2003; Hutchings et al., 2002; Godwin et al., 2004 and Hewitt et al., 2004). However, as this is the first inventory of fouling sponges in Singapore, we are unable determine if any of these are introduced. Only regular monitoring of an area documented thoroughly will reveal true invasions. In general, tropical high diversity areas are insufficiently known for well-founded conclusions (Van Soest et al., 2007). For example, one of the new records found this study, *Prosuberites oleteira*, which was fairly common on navigation buoys in Singapore waters, was first described from Pearl Harbor, Hawaii (De Laubenfels, 1957). This species is reported here in Southeast Asia for the first time. Its geographical distribution is thus greatly extended from Hawaii to Southeast Asia, however, it is not possible to determine if this species is an introduced species as baseline distribution data of this species are lacking. Interestingly, *Mycale (Mycale) grandis* Gray, 1967, an invasive sponge species reported from Hawaii (Coles et al., 1999, 2006; Coles & Bolick, 2007) was notably absent on all the 30 buoys in this study. This species was described from the India and we would expect it to be present on artificial substrata if it had traveled to Hawaii from India Ocean or Central Indo-Pacific. However the species is commonly found on natural substrata in Singapore waters (Lim et al., 2008).
ACKNOWLEDGEMENTS

The 14th International Marine Biology Workshop held in Singapore was organized by Tan Koh Siang (Tropical Marine Science Institute, National University of Singapore), Lena Chan (National Biodiversity Centre, National Parks Board, Singapore), Chou Loke Ming (Department of Biological Sciences, National University of Singapore) and Peter Ng (Raffles Museum of Biodiversity Research, National University of Singapore). Publication of the workshop proceedings was made possible with funds provided by the National University of Singapore and National Parks Board. We gratefully acknowledge Chief Hydrographer Dr Parry Oei, as well as Messrs. Henry Tan, Wong Kin Ann, Nicholas Teo and Lee Weng Choy from Hydrographic Department, Maritime and Port Authority of Singapore (MPA) for providing this opportunity to carry out the surveys. We also wish to thank the captain and crew of the vessel ‘Panduan’ for their help during the course of this project. Many thanks are also due to Dr Cai Yixiong (National Parks Board, Singapore) for invaluable contributions during sampling. This study also benefited greatly from discussions with Dr Rob van Soest and Mrs Elly Beglinger (Zoological Museum, Amsterdam); Mr Andrew Cabrinovic and Ms Clare Valentine (The Natural History Museum, London); Dr Giuliano Doria, Mr Massimo Perri and Ms Maria Bruna Invernia (Museo Civico di Storia Naturale ‘Giacomo Doria’, Genoa), all of whom freely and kindly assisted us in locating sponge types and specimens in their respective care. This study was partially funded by NUS Academic Research Fund (R347-000-044-123) to Tan Koh Siang, Sin Tsai Min and Serena Teo. The first author acknowledges the Martin Fellowship from the National Museum of Natural History, Leiden. The second author received support from the SYNTHESYS Project (http://www.synthesys.info/) financed by European Community Research Infrastructure Action under the FP6 “Structuring the European Research Area” Programme.

REFERENCES

Hardwicke, T., 1822. Description of a Zoophyte commonly found about the coast of Singapore Island (*Spongia patera*). *Asiatic Researches*, 14: 180–181, Pl. XIV.

}

