GRANDIDIERELLA HALOPHILUS A NEW SPECIES OF THE FAMILY AORIDAE (CRUSTACEA: AMPHIPODA) FROM THE SALTPANS OF THE INNER GULF OF THAILAND

K. Wongkamhaeng
Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, 90112 Thailand

P. Pholpunthin
Center of Excellence for Biodiversity of Peninsular Thailand (CBiPT), Department of Biology, Faculty of Science
Prince of Songkla University, 90112 Thailand

B. A. R. Azman
Marine Ecosystem Research Centre (EKOMAR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
Email: abarahim@gmail.com

ABSTRACT. — A new species of *Grandidierella* is described from the Inner Gulf of Thailand. This species inhabits high saline waters of abandoned saltpans from the Samut Sakorn district, Thailand. It appears to be closely related to *Grandidierella propodentata* Moore, 1986, also collected at hypersaline environments, in having an accessory flagellum; and arborescent setae on the inner face of the outer lobe of lower lip. The main diagnostic features of *Grandidierella halophilus* new species are a coxal plate 2 with ventral margin posteriorly produced into triangular expansion; uropod 3 peduncle inflated with ramus bearing a small second article; lower lip with arborescent setae on the inner face of the outer lobe; and bifid robust setae on antennae 1–2, gnathopods 1–2, pereopods 5–7, and uropods 1–2. This combination of characters has not been recorded previously in the *Grandidierella*.

KEY WORDS. — *Grandidierella halophilus*, new species, taxonomy, saltpans, Gulf of Thailand

INTRODUCTION

Species of the genus *Grandidierella* Coutière, 1904, are predominant and widespread in brackish, estuarine and coastal waters worldwide. There is extensive literature on the occurrence of *Grandidierella* species from the marine habitats (Myers, 1970, 1981, 1998; Ren, 2006; Bochert & Zettler, 2010; Azman & Othman, 2012), yet there are only two existing records of *Grandidierella* (*G. propodentata* Moore, 1986 and *G. exilis* Myers, 1981) from hypersaline environments. There are many reports of the 40 described species of *Grandidierella* worldwide. However, only three *Grandidierella* species are reported from the waters of Thailand and adjacent archipelagos, namely *G. gilesi* Chilton, 1921, *G. taihuiensis* Morino & Dai, 1990, and *G. gravipes* K. H. Barnard, 1935 (Chilton, 1925; Bussawich, 1985; Angsupanich & Kuwabara, 1995; Angsupanich et al., 2005; Ruensirikul et al., 2007; Ariyama et al., 2010). In the present study we provide a detailed description of both male and female specimens of *G. halophilus* new species collected from abandoned saltpans in the inner Gulf of Thailand. Interestingly, although *G. halophilus* is fairly abundant in these saltpans, there has been no detailed study on this organism.

MATERIAL AND METHODS

This study is based upon material collected from various abandoned saltpans of the Samut Sakorn Province (Fig. 1), Inner Gulf of Thailand in Feb.2011. Samples were collected from the host plant (*Ruppia maritima* Linnaeus) and wet sieved through a 0.55-mm mesh sieve. The materials retained on the sieve were then carefully transferred into plastic containers and fixed in 10% buffered formalin. In the laboratory, amphipod specimens were sorted out and stored in 70% alcohol. The animals were then examined under a compound microscope and later selected for dissection. The appendages of the dissected specimens were examined and figures were produced using a Leica DMLB light microscope with a camera lucida. All illustrations were digitally ‘inked’ following Coleman (2003). Figure legend: A, antenna; G,
GNATHOPOD; HD, head; LL, lower lip; MD, mandible; MX, maxilla; MP, maxilliped; P, pereopod; PL, pleopod; T, telson; U, uropod; UR, urosome; UL, upper lip; R, right; L, left; ♂, male; ♀, female. Type material is deposited at Prince of Songkla University Zoological Collection with the prefix PSUZC for museum numbers and the Universiti Kebangsaan Malaysia Muzium Zoologi with the prefix UKMMMZ for museum numbers.

TAXONOMY

Genus Grandidierella Coutière, 1904

Grandidierella halophilus, new species

(Type species)

(Figs. 2–10)

Allotype. Female, collected with holotype, PSUZC-CR-0262 (adult female, 3.9 mm).

Other material. Same data as holotype, UKMMMZ-1431 (10♂; 15♀), PSUZC-CR-0263 (10♂; 20♀).

Description. — Male (holotype) (Figs. 3–6). Total body length 6.9 mm. Body slender and subcylindrical.

Head. Head subequal in length to first 2 pereonites; rostrum not developed; inferior antennal sinus moderate and concave, 0.3 times of head length; eye distinct. Antenna 1 (Fig. 3A1) slightly longer than antenna 2, ratio of peduncular articles 1–3 as 1: 1.7: 1; article 1 slender, with 2 postero-marginal spines; flagellum with 22 articles, 1.4 times as long as peduncle; accessory flagellum uni-articulate, short. Antenna 2 (Fig. 3A2) peduncle stout; 4 segmented in ratio of 1: 3: 10: 7; inner margin of article 3 with 3 robust setae and 2 posterodistal robust setae; article 5 shorter than 4; flagellum short, subequal in length to peduncular article 5, composed of 7 articles; flagellum articles 2–7 with a pair of curved bifid robust setae on each article.

Upper lip (Fig. 5UL) or labrum round and broad, with small depression in the middle and pubescent on each lobe. Lower lip (Fig. 5LL) inner plates well developed and subtriangular in shape, mandibular process narrow but well developed; outer plate with arborescent setae on the inner face of the outer lobe, covered with thin hairs. Mandible (Fig. 5MD), both similar to each other except for number of accessory blades constituting 4 in right and 5 in left ones; right incisor 4 dentates, left incisor 5 dentates; lacinia mobilis armed with 4 teeth on left side and 5 teeth on right; molar process medium, ridged distally and serrate marginally, armed a single seta; palp triarticulate with ratios of 1: 1.2: 1.1, article 3 with apical setae and marginal setae. Maxilla 1 (Fig. 5MX1), inner plate small; outer plate with 8 apical robust setae; palp extending beyond outer plate, biarticulate with 6 apical spines. Maxilla 2 (Fig. 5MX2), inner plate with mediofacial row of 25 slender setae and one robust seta located in the middle, outer margin naked; outer plate subequal in size with inner plate. Maxilliped (Fig. 5MP), inner plate broad and short, apically provided with several plumose setae and 3 marginal setae; outer plate broad, almost reaching palp...

Fig. 1. Map showing the sampling area.
article 2 with 13 marginal spines; palp 4-articulate with ratio of 2: 3: 3.2 : 1.

Pereon. *Gnathopod 1* (Fig. 3G1) carpochelete, larger than gnathopod 2; coxal plate subrectangular, inner side bearing ventral process; length ratio of articles from basis to dactylus 7.8: 1: 2.7: 8: 3.5: 3.5; basis slender, anterior margin straight, 3.9 as long as broad, with one fine seta on posteriodistal margin; ischium short, subrectangular; merus trapezoidal, anterodistally produced; carpus 1.6 times as long as broad, posterodistal corner produced with a tooth and a smaller tooth present on inner face, posterior margin setose with a small tooth; propodus subequal to dactylus in length, 0.5 times length of carpus, posterior margin proximally concave, distally expanded; dactylus fairly curved, distal end concave with 2 robust setae. *Gnathopod 2* (Fig. 3G2) subchelate; coxa plate shallow with ventral margins posteriorly produced into triangular expansion; length ratio of articles from basis to dactylus 4.6: 1: 1.7: 3.8: 3.3: 1.8; basis slender, as long as articles 5 and 6 combined, anterior margin straight with 6 fine setae; ischium subrectangular; merus trapezoidal, posterior distal angle produced, posterior margin bearing long setae; carpus 2.5 times as long as wide, posterior margin crenulate, bearing 25 dense setae; propodus palmar margin transverse, with fine setae, bearing a bifid robust seta at posterodistal corner and 2 bifid robust setae on posterior margin; dactylus slightly longer than palmar margin, inner margin crenulate with several fine setules.

Pereopod 3 (Fig. 4P3) slender; coxa plate small, subquadrate; length ratio of articles from basis to dactylus 4.8: 1: 2.5: 1.7: 1.7: 1.2; basis slender, sparsely setose on anterior and posterior margins and posterodistal corner; ischium short, subrectangular; merus slightly produced anterodistally; carpus suboval, posterior margin setose; propodus narrow, both margin bearing setae; dactylus long and thin, shorter than propodus. **Pereopod 4** (Fig. 4P4) similar to pereopod 3, coxa plate with ventral margin medially produced triangular; length ratio of articles from basis to dactylus 4.1: 1: 2.5: 1.4: 1.6: 1.1; basis slender, with short setae on anterior margin; ischium short, subrectangular; merus slightly produced anterodistally; carpus oval with setae on both anterior and posterior margins; propodus long and narrow, bearing setae on both anterior and posterior margins ; dactylus long and thin. **Pereopod 5** (Fig. 4P5) coxa posterodorsally expanded into long, narrowly oblong angle; length ratio of articles from basis to dactylus 5.8: 1: 2.2: 1.8: 0.8; basis subrectangular with fine setae along anterior margin; ischium short; carpus with two robust setae along posterior margin and on posterodistally; propodus with four robust setae along posterior margin; dactylus short, strongly curved. **Pereopod 6** (Fig. 4P6) elongate, 1.6 times as long as pereopod 5;
Fig. 3. *Grandidierella halophitus* new species, holotype, male, (PSUZC-CR-0261), 6.9 mm. Samut Sakorn, Inner Gulf of Thailand. All scale bars represent 0.5 mm.
Fig. 4. *Grandidierella halophilus* new species, holotype, male, (PSUZC-CR-0261), 6.9 mm. Samut Sakorn, Inner Gulf of Thailand. All scale bars represent 0.5 mm.
Fig. 5. *Grandidierella halophilus* new species, holotype, male, (PSUZC-CR-0261), 6.9 mm. Samut Sakorn, Inner Gulf of Thailand. All scale bars represent 0.2 mm.
Fig. 6. *Grandidierella halophilus* new species, holotype, male, (PSUZC-CR-0261), 6.9 mm. Samut Sakorn, Inner Gulf of Thailand. Scale bars for U1–U3 represent 0.1 mm; PL1–PL3 represent 0.5 mm; T represents 0.05 mm.
coxa posteriorly produced with rounded lobe; length ratio of articles from basis to dactylus 3.7: 1: 2.7: 1: 2.7: 1: 2.7: 1: 1.7: 2.7: 1; basis almost linear, with 7 small bifid robust setae along anterior margin; ischium short with setae on anteroventral corner; merus oblong, with bifid marginal robust setae on both anterior and posterior margins; carpus bearing two rows of bifid robust setae; propodus slender, slightly curved with two rows of marginal robust setae and setose posterodistally; dactylus tapering to a sharply pointed tip, subapex bearing small setae on anterior and posterior margins, with one bifid marginal robust seta. carpus shorter and narrower than merus with long plumose setae; propodus elongate and slender, slightly curved with two rows of marginal robust setae and setose posterodistally; carpus bearing two rows of bifid robust setae; ischium short and subrectangular; merus elongate with setae on anterior and posterior margins, with one bifid robust seta and several setae along anterior margin; coxa posteriorly produced with rounded lobe; basis almost linear, with 7 small bifid robust setae along anterior margin; ischium short with setae on anteroventral corner; merus oblong, with bifid marginal robust setae on both anterior and posterior margins; carpus bearing two rows of bifid robust setae; propodus slender, slightly curved with two rows of marginal robust setae and setose posterodistally; dactylus tapering to a sharply pointed tip, subapex bearing small setae on anterior and posterior margins, with one bifid marginal robust seta. carpus shorter and narrower than merus with long plumose setae; propodus elongate and slender, slightly curved with bifid robust setae along anterior margin; dactylus tapering to pointed tip, with one thin setae 2/3 from proximal end.

Pleon. Pleopods 1–3 (Fig. 6PL1-PL3) well developed; peduncles cylindrical, longer than broad and fringed with several plumose setae and a pair of retinaculae on anterior margin; inner ramus slightly longer than peduncle with 9–10 articles, outer ramus shorter than inner ramus, both rami with facial setae.

Uropod 1 (Fig. 6U1) not extending beyond ends of other uropods; peduncle longer than inner and outer rami, fringed with bifid robust setae, peduncular apex bearing a posteroverbral process; outer and inner margins of both rami lined with a row of robust setae, distal margins rounded and bearing with several robust setae. **Uropod 2** (Fig. 6U2) slightly longer than uropod 3, peduncle shorter than inner and outer rami, both with two bifid robust setae; outer ramus slightly longer than inner one, both rami lined with a row of bifid robust setae and distal margin bearing short and long robust setae. **Uropod 3** (Fig. 6U3) uniramous, peduncle much shorter than rami; ramus elongate with short second article, both outer and inner margins with a row of long setae; apex with 4 long stiff setae. **Telson** (Fig. 6T) subtrapezoidal, ending with double pointed apex, each with one long robust seta and one short (thin) seta.

Female. (allotype) (Figs. 7–10). Total body length 3.9 mm (from tip of rostrum to apex of telson). — (sexually dimorphic characters).

Antenna 1 (Fig. 7A1) without accessory flagellum, flagellum with 15 articles. **Antenna 2** (Fig. 7A2) peduncular article 3 with 2 bifid robust setae at ventrodorsal corner. Maxilla 2, inner plate without robust setae.

Pereon. Gnathopod 1 (Fig. 7G1) subchelate, smaller than that of male. Coxal plate deeper than those of male; basis more robust, 1.8 times as long as broad; carpus subtriangular, 1.5 times as long as broad, posterior margin setose, with the posterior distal margin produced into a short stout tooth; propodus oval, shorter than carpus, palm oblique and defined by a large bifid robust seta, palmar margin with short setule, distal end covered sparse plumose setae; dactylus curved with 3 inner marginal short stout robust setae. **Gnathopod 2** (Fig. 7G2) similar to that of male, slightly smaller to gnathopod 1; basis slender; carpus 2.2 times as long as wide; propodus wider than that of male, palm transverse and defined by 2 large bifid robust setae; dactylus curved, grasping margin with fine setule and 5 short stout robust setae.

Etymology. — The specific name “halophilus” is a combination of the Greek halos = salt and philus = friend, loving, referring to the habitat in which this species lives.

Remarks. — The specimens of *Grandidierella halophilus* new species were collected in a hypersaline habitat (~80 ppt) and associated with seagrass (*Ruppia maritima* Linnaeus). To date, only two *Grandidiereara* species have been reported from hypersaline environments (*G. propodentata* and *G. exillis*). The former species shows a distinctive similarity with *G. halophilus* in the existence of the unusual arboresect setae on the inner face of the outer lobe of the lower lip (Moore, 1986: Fig. 2e). In addition, several differences also can be seen in comparing with *G. propodentata*, including (1) the spout-like male antenna 2 article 4 (vs. normal) (Moore, 1986: Fig. 2a); (2) the inwardly directed proximal tooth on male gnathopod 1 propodus (vs. posterior margin proximally concave, distally expanded; Moore, 1986: Fig. 1a) and (3) male gnathopod 1 carpus triangular with two large subequal teeth at posterodistal corner (vs. posterodistal corner with produced tooth and posterior margin setose with a small tooth; Moore, 1986: Fig. 1a). The new species differs from *G. exillis* in the presence of an accessory flagellum (Fig. 3A1); presence of the arboresect setae on the inner face of the outer lobe of the lower lip (Fig. 5LL); and by the presence of a second article on uropod 3 ramus (Fig. 6U3).

A sternal process in the male *G. halophilus* new species is seems to be unique among *Grandidierella* members. Only four species, *G. bonnieroides*, *G. exillis*, *G. trispinosa*, and *G. spinicola* share this distinct character. The new species, *Grandidierella halophilus*, is similar to *G. bonnieroides* in having the male sternal process; gnathopod 1 carpocheal with posterodistal corner with a produced tooth, inner face with a produced small tooth and posterior margin setose with a small tooth. As reported by Myers (1970), in his investigations on material from the Caribbean and Gulf of Mexico, the sternal process in *G. bonnieroides* shows considerable variation between populations, suggesting that most of the populations are genetically distinct. In agreement with Asari & Myers (1982), the south Indian *G. bonnieroides* also exhibits distinct local variations displaying the possibility of group sibling species.

Grandidierella halophilus can be easily distinguished from all other known species of the genus in the combination of the following characters: (1) coxal plate 2 with ventral margin posteriorly produced into triangular expansion (Fig. 3G2); (2) uropod 3 peduncle inflated with ramus bearing a small second article (Fig. 6U3); (3) lower lip with arboresect setae on the inner face of the outer lobe (Fig. 5LL). Moreover, all
Fig. 7. *Grandidierella halophilus* new species, allotype, female, (PSUZC-CR-0262), 3.9 mm. Samut Sakorn, Inner Gulf of Thailand. All scale bars represent 0.2 mm.
Fig. 8. *Grandidierella halophilus* new species, allotype, female, (PSUZC-CR-0262), 3.9 mm. Samut Sakorn, Inner Gulf of Thailand. All scale bars represent 0.2 mm.
Fig. 9. Grandidierella halophilus new species, allotype, female, (PSUZC-CR-0262), 3.9 mm. Samut Sakorn, Inner Gulf of Thailand. All scale bars represent 0.1 mm.
Fig. 10. *Grandidierella halophilus* new species, allotype, female, (PSUZC-CR-0262), 3.9 mm. Samut Sakorn, Inner Gulf of Thailand. Scale bar for U3 represents 0.05 mm; U2, U3 and T represent 0.1 mm, remaining represents 0.2 mm.
Table 1. Comparison of diagnostic character in some closely related *Grandidierella* species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Body length (mm)</th>
<th>Accessory flagellum</th>
<th>Lower lip</th>
<th>Sternal spine</th>
<th>Basis of male G1 (Length/Width)</th>
<th>G1 (Carpus: Propodus)</th>
<th>Propodus of male G1</th>
<th>Basis of G1 (posterior margin)</th>
<th>Basis of G2 (length/width)</th>
<th>Coxae 2–4</th>
<th>Basis of P6 & P7</th>
<th>U3 rami</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. halophilus</td>
<td>6.9</td>
<td>present</td>
<td>outer plate with two finger-like robust setae on lobes</td>
<td>present</td>
<td>slender (4×)</td>
<td>2.9×</td>
<td>posterior margin distally expanded</td>
<td>with a tooth</td>
<td>slender (2.06×)</td>
<td>with a tooth</td>
<td>coxa 2 produced anteriorly</td>
<td>anterior with small bidentate robust setae</td>
</tr>
<tr>
<td>G. bispinosa Schellenberg, 1938</td>
<td>4.5</td>
<td>present</td>
<td>outer plate well developed with bristle shoulders</td>
<td>absent</td>
<td>stout (2.18×)</td>
<td>2.25×</td>
<td>posterior margin distally expanded</td>
<td>smooth</td>
<td>slender (2.53×), crenulate anterior margin</td>
<td>coxae 2–4 not produced</td>
<td>anterior with small robust setae</td>
<td>elongate with short second article</td>
</tr>
<tr>
<td>G. bonneieroides Stephensen, 1948</td>
<td>4.5</td>
<td>absent</td>
<td>outer plate well developed with bristle shoulders</td>
<td>present</td>
<td>slender (2.25×)</td>
<td>2×</td>
<td>inflated in the middle</td>
<td>with a tooth</td>
<td>slender (3.2×)</td>
<td>anterior margin smooth</td>
<td>coxa 2–4 not produced</td>
<td>anterior with small robust setae</td>
</tr>
<tr>
<td>G. exillis Myers, 1981</td>
<td>7.5</td>
<td>absent</td>
<td>outer plate well developed with bristle shoulders</td>
<td>present</td>
<td>slender (2.46×)</td>
<td>2×</td>
<td>inflated in the middle</td>
<td>smooth</td>
<td>slender (5×)</td>
<td>anterior margin smooth</td>
<td>coxa 2–4 not produced</td>
<td>anterior margin with long plumose setae</td>
</tr>
<tr>
<td>G. mahafalensis Coutière, 1904</td>
<td>6.7</td>
<td>present</td>
<td>outer plate well developed with bristle shoulders</td>
<td>absent</td>
<td>slender (2.63×)</td>
<td>2.06×</td>
<td>posterior margin distally expanded</td>
<td>with a tooth</td>
<td>slender (3.04×)</td>
<td>anterior margin smooth</td>
<td>coxa 2–4 not produced</td>
<td>anterior margin with long setae</td>
</tr>
<tr>
<td>G. propodentata Moore, 1986</td>
<td>8.2</td>
<td>present</td>
<td>outer plate with two finger-like robust setae on lobes</td>
<td>absent</td>
<td>slender (2.76×)</td>
<td>1.46×</td>
<td>with tooth on basal</td>
<td>smooth</td>
<td>slender (4.29×)</td>
<td>anterior margin smooth</td>
<td>coxa 2–4 not produced</td>
<td>anterior margin with small setae</td>
</tr>
<tr>
<td>G. spinicosta Myers, 1972</td>
<td>8.0</td>
<td>present</td>
<td>outer plate well developed with bristle shoulders</td>
<td>present</td>
<td>slender (2.11×)</td>
<td>2.24×</td>
<td>inflated in the middle</td>
<td>smooth</td>
<td>slender (4×)</td>
<td>anterior margin smooth</td>
<td>coxa 2–4 produce anteriorly</td>
<td>anterior margin with long setae</td>
</tr>
<tr>
<td>G. trispinosa Bano & Kazmi, 2010</td>
<td>6.6</td>
<td>no data</td>
<td>no data</td>
<td>present</td>
<td>slender (2.9×)</td>
<td>3×</td>
<td>posterior margin distally expanded</td>
<td>smooth</td>
<td>slender (3.6×)</td>
<td>anterior margin smooth</td>
<td>coxa 2–4 produced anteriorly</td>
<td>anterior margin with long setae</td>
</tr>
</tbody>
</table>
of the robust setae occurring on antennae 1–2, gnathopods 1–2, pereopods 5–7 and uropods 1–3 are bifid. This character has not been reported elsewhere in the genus but has been shown in illustrations for G. mahafalensis (Ruffo, 1958) and G. propodentata (Moore, 1986). A summary of the distinguishing characters of the species discussed here given in Table 1.

ACKNOWLEDGEMENTS

We are grateful to the Department of Biology, Faculty of Science, Prince of Songkla University and Marine Science Programme, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia for the laboratory facilities. Thanks are due to the National Research University Project of Thailand’s Office of the Higher Education Commission for financial support. Thanks to Phairin Phenpraphai from Marine and Coastal Resources Research Center, the Upper Gulf of Thailand in providing us the specimens for this study. We also thank our colleagues Charles Oliver Coleman from Museum für Naturkunde, Germany for the essential literature.

LITERATURE CITED

Wongkamhaeng et al.: New species of Grandidierella from the Inner Gulf of Thailand

