POLYCHELID LOBSTERS OF TAIWAN (DECAPODA: POLYCHELIDAE)

Shane T. Ahyong
Australian Museum, 6 College Street, Sydney, NSW 2010, Australia

Tin-Yam Chan
Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan (Corresponding author)

ABSTRACT. – Polychelids collected by joint Taiwanese/French deepwater trawling around Taiwan are reported. Nine species in two genera of Polychelidae are now known from Taiwan of which six species represent new records. Pentacheles laevis, Polycheles aculeatus, P. auriculatus, P. galil, P. helleri, and P. sculptus are newly reported from Taiwan. Previous records of P. enthrix from Taiwan are referable to P. amemiyai, a species previously regarded as a synonym of the former. Therefore, P. amemiyai is removed from the synonymy of P. enthrix and redescribed. Differences are noted between Taiwanese P. typhlops and Atlantic material suggesting that P. typhlops may comprise two or more species. Comparative illustrations and a key to the Taiwanese Polychelidae are given.

KEY WORDS. – Crustacea, Decapoda, Polychelidae, Taiwan, new records.

INTRODUCTION

The blind deep-sea lobsters of the family Polychelidae are characterized by their fixed, rudimentary eye-stalks, and the presence of chelae on the first four or five pereopods. The Taiwanese fauna is known from three studies: Chan & Yu (1989, 1993), and Galil (2000), all based on material collected by commercial trawlers limited to a depth of 600 m. Chan & Yu (1989) reported the presence of P. typhlops Heller, 1862, and P. baccatus Bate, 1878, and Chan & Yu (1993) subsequently added P. enthrix (Bate, 1878) to the Taiwanese fauna. In her world revision of the Polychelidae, Galil (2000) identified Taiwanese records of P. baccatus as a new species, P. coccifer. Thus, Galil (2000) recognised three species from Taiwanese waters: Polycheles coccifer Galil, 2000, P. enthrix Bate, 1878, P. typhlops Heller, 1862.

Recent expeditions organized by Taiwanese institutions together with the Muséum national d’Histoire naturelle, Paris, and the Institut de Recherche pour le Développement, France (IRD) to explore the deepwater fauna around Taiwan have yielded many polychelid specimens previously unknown from Taiwan. The present report is based on polychelids collected by joint Taiwanese/French deepwater exploratory trawling off Taiwan and other specimens in the collections of the National Taiwan Ocean University and the Raffles Museum of Biodiversity Research, Singapore. Five species are new records for Taiwanese waters. Results of the present study also show that previous records of P. enthrix from Taiwan are referable to P. amemiyai Yokoya, 1933, herein removed from the synonymy of P. enthrix.

MATERIALS AND METHODS

Descriptive terminology follows Galil (2000) and Ahyong & Brown (2002). Specimens are deposited in the collections of the National Taiwan Ocean University, Keelung (NTOU), the South Australian Museum, Adelaide (SAM), and the Zoological Reference Collection (ZRC), Raffles Museum of Biodiversity Research, Singapore. Measurements of specimens are in millimetres. Abbreviations: carapace length (cl.), millimetres (mm), beam trawl (CP), Otter Trawl Le Drézén type JUNEAUX (CD).

SYSTEMATICS

POLYCHELIDAE WOOD-MASON, 1874

Pentacheles Bate, 1878

Pentacheles laevis Bate, 1878
(Figs. 1A-C, 4A)

Pentacheles gracilis Bate, 1878
(Figs. 1A-C, 4A)

Pentacheles coccifer Galil, 2000
(Figs. 1A-C, 4A)

Pentacheles amemiyai Yokoya, 1933
(Figs. 1A-C, 4A)

Pentacheles sculptus Bate, 1878
(Figs. 1A-C, 4A)

Pentacheles galil Bate, 1878
(Figs. 1A-C, 4A)

Pentacheles auriculatus Bate, 1878
(Figs. 1A-C, 4A)

Pentacheles helleri Bate, 1878
(Figs. 1A-C, 4A)

Pentacheles typhlops Bate, 1878
(Figs. 1A-C, 4A)

Pentacheles enthrix Bate, 1878
(Figs. 1A-C, 4A)
Polycheles dubius Bouvier, 1905a: 480 [type locality: off the Azores, 44°04'N, 9°81'W].

Polycheles eryoniformis Bouvier, 1905b: 118 [type locality: off the Azores, 34°50'N, 9°81'W].

Material examined. – NE Taiwan: 1 female (cl. 16.9 mm), (NTOU), 24°28.89'N, 122°12.79'E, 500-1183 m, TAIWAN 2003 CD210, 1 Jun. 2003; 1 female (cl. 22.5 mm), (NTOU), 24°28.59'N, 122°12.66'E, 490-1027 m, TAIWAN 2003 CD 214, 27 Aug. 2003.

SW Taiwan: 1 female (cl. 27.0 mm), (NTOU), 22°14.8’N, 120°02.8’E, 880-1070 m, TAIWAN 2000 CP23, 29 Jul. 2000; 1 damaged specimen (cl. 22.1 mm), (NTOU), 22°16.56’N, 120°06.11’E, 736-1040 m, TAIWAN 2001 CD134, 22 Nov. 2001; 1 male (cl. 35.8 mm), 1 female (cl. 35.6 mm), (NTOU), 22°12.04’N, 119°59.96’E, 1110-985 m, TAIWAN 2001 CD141, 24 Nov. 2001.

Remarks. – The Taiwanese specimens agree well with published accounts (Galil, 2000; Ahyong & Brown, 2002). The inner and outer orbital margins are each armed with a single spine and the lateral margins of the carapace are armed as follows: 7-10:3:14-15.

Distribution. – Worldwide, from the Indo-West Pacific, Eastern Pacific, Western and Eastern Atlantic, at depths between 347 and 2505 m. A new record for Taiwan.

Polycheles aculeatus Galil, 2000

(Figs. 3D, 4B)

Pentaccheles aculeatus Galil, 2000: 312-315 [type locality: New Caledonia, 22°35.6’S, 166°26.2’E].

Material examined. – Tai-Shi fishing port, I-Lan County, NE Taiwan: 1 male (cl. 34.6 mm), (NTOU), commercial trawler, coll. C.W. Lin, 6 May. 2003.

Remarks. – The single specimen agrees well with the type description (Galil, 2000) differing only in having a 6-7: 3-4: 11 instead of 6-7:3:8-10 lateral carapace spines, and 5-6 instead of 6-7 branchial spines.

Distribution. – Vanuatu, New Caledonia, Lifou, Indonesia, Western and Eastern Australia, the East China Sea and for the first time from Taiwan; 144-1053 m (Galil, 2000).

Polycheles amemiyai Yokoya, 1933

(Figs. 2, 4C)

Polycheles amemiyai Yokoya, 1933: 44-45, Fig. 23 [type locality: Bungo Strait, Japan].

Stereomastis nana - Baba et al., 1986, pl. 109 [not S. nana (Smith, 1880)].

Polycheles enthrix - Chan & Yu, 1993: 107; Galil, 2000: 322-325 [part] [not P. enthrix (Bate, 1878)].

Material examined. – Tai-Yo-Yu, N Taiwan: 1 ovigerous female (cl. 50.5 mm), (NTOU), commercial trawler, coll. C. W. Lin, 10 Jun. 2001. Tai-Shi fishing port, I-Lan County, NE Taiwan: 1 male (cl. 45.2 mm), (NTOU), commercial trawler, 28 May. 1998; 1 ovigerous female (cl. 63.4 mm), (NTOU), commercial trawler, 6 Jun. 1998; 1 female (cl. 53.2 mm), (NTOU), commercial trawler, 27 Sep. 2002; 1 male (cl. 49.1 mm), (ZRC 2001.0126), commercial trawler, coll. P. Ng. Nangfangao fishing port, I-Lan County, NE Taiwan: 2 females (cl. 21.3-25.3 mm), (NTOU), commercial trawler, 10 Apr. 1991. SW Taiwan: 1 female (cl. 25.4 mm), (NTOU), 22°11.40’N, 120°22.58’E, 452-280 m, TAIWAN 2001 CD140, 23 Nov. 2001.

Diagnosis. – Carapace with two rostral spines and a single spine midway between rostral spines and spine on inner orbital margin. Outer proximal margin of basal antennular segment with 2 spines. Gastric region of carapace with 1 or 2 spines of similar size to spines of median carina; branchial carinae obsolete; branchial groove without spines; postcervical groove with antorbse spine on posterior margin between median carina and branchial carina. Median carina of abdominal tergites 1-4 entire, with short antorbse tooth on tergites 1-3 or 4, each without posterior upright tooth. Abdominal tergites 2-5 relatively smooth, without distinct oblique grooves. Pereopod 1 merus with dorsal and ventral margins minutely and sparsely spinulate.

Description. – Carapace subrectangular, margins slightly convergent proximally; dorsal surface sparsely setose, faintly punctate; gastric region at most with single spine of similar size to median spines, and occasionally with scattered, minute spinules; lateral surface with row of setae along lateral carina; frontal margin broadly curved, with two rostral spines, and a single spine midway between rostral spines and spine on inner orbital margin; lower anterior margin with 2 small spines adjacent to antennal protopod. Median submarginal tooth short, inconspicuous. Dorsal orbital sinus broadly triangular; outer angle of orbital sinus produced anteriorly, margin unarmed. Lateral margins of carapace with evenly graded spines, slightly decreasing in size posteriorly; spine formula 7:10-4:5:12-18. Cervical and postcervical incisions with smooth margins. Postcervical groove unarmed. Median postrostral carina prominent, spine formula 1,1,1-2:0-1. Median postcervical carina prominent, irregular, spine formula 2,0-2. Postorbital carina ill-defined. Branchial carina sinuous, indicated by row of well-spaced tubercles. Branchial groove unarmed. Dorsal posterior border of carapace smooth, with 2 pairs of antorbse spines.

Abdominal tergites smooth, punctate, mesially carinate; dorsum without oblique grooves. Anterior margin of tergite 1 with short antorbse median tooth and small sublateral spine. Tergites 2-3 or 4 with short antorbse median tooth, shorter and blunter posteriorly. Tergite 5 with blunt median carina; tergite 6 with short median carina posteriorly. Pleuron 2 pointed anteriorly; surface smooth; margins setose but not granulate or denticulate; lower margin faintly concave. Telson with low, obsolete proximal swelling; without granules. Pleura 3-6 becoming narrower posteriorly; margins smooth, without denticles or tubercles. Uropodal protopod without tubercles or granules; endopod with blunt mid-rib, surface slightly irregular; exopod with median sulcus, surface slightly wrinkled.
Eyestalk with small dorsal conical tooth.

Basal antennular segment produced anteriorly to a sharp point, mesial margin with 8-12 teeth, apex extending beyond distal segment of antennular peduncle; outer proximal margin rounded, with two spines of which the distal most is largest. Distal segment of antennular peduncle with blunt inner tooth.

Distal and proximal segments of antennal peduncle with stout inner distal spine; scaphocerite lanceolate, not extending anteriorly beyond distal segment.

Maxilliped 3 epipod rudimentary, about 0.21-0.26 ischium length.

Pereopod 1 about as long as body. Merus with curved spine on dorsal distal margin; dorsal and ventral margins minutely and sparsely spinulate, with spines on lower margin more numerous. Carpus nearly as long as merus; adults with 2 rows of irregular spinules on distodorsal surface; ventral surface smooth, distally with spinule and blunt projection mesially. Dactylus about as long as palm; palm minutely spinulate along upper and ventral margins, bearing distolateral spine as well as blunt projection.

Pereopod 2 with ischium and basis fused; ischiobasis articulating with merus; merus and ischiobasis unarmed; carpus with dorsodistal spine; propodus dorsally cristate; dactylus and pollex with curved apices, opposable margins pectinate.

Pereopods 3-5 with merus and ischium fused, articulating with basis. Pereopod 5 in males with pollex about one-quarter length of dactylus; adult females with pollex and dactylus of equal length.

Pleopod 1 uniramous, forming copulatory organ, comprising distal and proximal segments; proximal segment (basis) shorter than distal segment, outer margin setose; distal elongate, spatulate, with appendix interna on inner subdistal margin; inner proximal margin sparsely setose.

Remarks. – In revising the Polychelidae, Galil (2000) synonymised P. amemiyai Yokoya, 1933, from Japan, and P. kermadecensis (Sund, 1920), from the Kermadec Islands, with P. enthrix Bate, 1888. Although the three nominal species closely resemble each other, P. kermadecensis was recently shown to be distinct from P. enthrix (see Ahyong & Brown, 2002). Similarly, on the basis of the present study, we believe that P. amemiyai should also be removed from the synonymy of P. enthrix.

Galil (2000) identified Japanese material reported by Baba et al. (1986) (under Stereomastis nana) and Taiwanese material reported by Chan & Yu (1993) (under Polychelus enthrix) as P. enthrix. Comparison of P. enthrix sensu stricto with Taiwanese specimens and the account of Baba et al. (1986) shows that they differ subtly but consistently. The Taiwanese/Japanese form differs from P. enthrix in having fewer spines on the frontal margin of the carapace, in having a short median carina instead of an indistinct swelling on the sixth abdominal tergite, and in colour-in-life. In P. enthrix the frontal margin between the inner orbital margins is lined with spines. Conversely, in the Taiwanese/Japanese form, only a single spine is present between the paired rostral spines and the spine of the inner orbital margin. The most striking difference between the two forms, however, is the colour-in-life. Polychelus enthrix is uniformly deep-red in life (Ahyong & Brown, 2002), whereas the Taiwanese/Japanese form is generally orange-pink or pink-red with the cervical and branchial grooves, lateral and posterior margins of the carapace white or cream in colour. The Taiwanese/Japanese form agrees in almost all respects with the figure and brief account of P. amemiyai Yokoya, 1933, described from Japan. Yokoya (1933) did not record the colour-in-life of P. amemiyai, but his description and figure clearly indicate the spination of the frontal margin of the carapace – in precise agreement with the specimens reported here. Unfortunately, the holotype of P. amemiyai appears to be lost (Galil, 2000, T. Komai, pers. comm.) and Yokoya’s (1933) account of P. amemiyai neither mentions the number of spines on the anterolateral margin of the basal antennular segment, nor are any spines shown in his figure. However, in all other respects, the present specimens agree with the type description and figure of P. amemiyai. Therefore, P. amemiyai is herein recognised as a distinct species and removed from the synonymy of P. enthrix.

As with P. enthrix, P. amemiyai differs from P. kermadecensis in colour-in-life and in lacking the numerous dorsal spines on the gastric and branchial regions of the carapace. As with P. enthrix, P. kermadecensis also differs from P. amemiyai in bearing more numerous frontal spines on the carapace. Polychelus kermadecensis bears a similar colour pattern to P. amemiyai in having white carapace grooves and margins, but differs in being pale pinkish-purple instead of orangish-pink or pinkish-red in life.

The Taiwanese specimens of P. amemiyai are morphologically uniform, showing slight variation in the lateral carapace spination and acuteness of the antorbse median abdominal spines. The antorbse median spines on abdominal tergites 1-4 are generally sharp in small specimens and blunt in adults. Hence, variation in the acuteness of the median antorbse tooth on the posterior abdominal tergites in P. amemiyai resembles that of P. enthrix and P. kermadecensis as reported by Ahyong & Brown (2002). Variation is also present in the chelation of the fifth pereopod in the females. In the juvenile female, the dactylus is about twice as long as the pollex, whereas in the adult, the pollex and dactylus are equal. In females, the dactylus becomes relatively shorter with increasing body size.

The Japanese specimen figured in colour by Baba et al. (1986) as Stereomastis nana is clearly referable to P. amemiyai. The
colour and frontal ornamentation of the carapace agree precisely with the present specimens of P. amemiyai. In removing P. kermadecensis from the synonymy of P. enthrix, Ahyong & Brown (2002) suggested that all records of P. enthrix require verification. Judging by the known distribution of P. amemiyai, it is likely that other records of P. enthrix from the East China Sea and Japan are also based on the former species. Thus, P. enthrix has a central to western Pacific distribution, ranging from Fiji to eastern Australia. Polycheles kermadecensis has a southwestern Pacific distribution, ranging from the Kermadec Islands to eastern Australia, and P. amemiyai is presently known only from the southwestern Pacific around Japan and Taiwan.

Distribution. – Presently known only from Taiwan and Japan at depths of 452 (perhaps 280, see station data of CD140) - 1000 m (Baba et al., 1986, as Stereomastis nana).

Polycheles auriculatus Bate, 1878
(Figs. 3A-C, 4D)

Pentacheles auriculatus Bate, 1878: 280 [type locality: off Kandavu Island, Fiji, 19°07.5°S, 178°19.35'E].

Polycheles auriculatus - Galil, 2000: 293, 315-317, Fig. 12.

Material examined. – NE Taiwan: 1 male (cl. 15.0 mm), (NTOU) 24°47.5°N, 122°17.4°E, 1134 m, TAIWAN 2000 CP61, 4 Aug.2000.

SW Taiwan: 1 eryoneicus larva (cl. 15.5 mm), (NTOU), 25 Nov.1994; 1 male (cl. 21.2 mm), (NTOU), commercial trawler, 20 May.1997; 1 female (cl. 32.0 mm), (NTOU), commercial trawler, 3 Oct.1997. Nangfangao fishing port, I-Lan County, NE Taiwan: 1 ovigerous female (cl. 30.6 mm), (NTOU), 2 May.1985: 1 male (cl. 29.6 mm), (ZRC 2001.0144, part), commercial trawler, coll. P. Ng et al., 28 May.1997. Tong-Kang fishing port, Ping Tong County, SW Taiwan: 1 ovigerous female (cl. 38.6 mm), (NTOU), commercial trawler, 25 Feb.1995; 1 ovigerous female (cl. 46.9 mm), (NTOU), commercial trawler, coll. S. H. Wu, Dec.1998. *SW Taiwan:* 1 male (cl. 34.4 mm), (NTOU), 22°24.06'N, 120°13.03'E, 300 m, TAIWAN 2002 CP165, 26 May.2002. *Taiwan, no specific locality:* 1 female (cl. 33.9 mm), (NTOU), commercial trawler, coll. S. H. Wu, Nov.2001.

Remarks. – Galil (2000) showed that previous records of *P. baccatus* from Taiwan are based on an undescribed species that she named *P. coccifer*. Polycheles coccifer differs from *P. baccatus* chiefly by the lower number of lateral carapace spines in the anterior division: 6-8 vs 10-12. The present specimens of *P. coccifer* agree closely with the type description but exhibit a greater range in the lateral carapace spination – 7-8:3-5:14-28 compared to 6-7:4-6:20-23 (Galil, 2000).

Polycheles galil Ahyong & Brown, 2002
(Figs. 3J, K, 4F)

Polycheles galil Ahyong & Brown, 2002: 56-60, 75, Figs. 2, 3A-B [type locality: 258 km NW of Port Hedland, Western Australia, 18°42’S, 116°21’E].

Material examined. – NE Taiwan: 1 female (cl. 26.3 mm), (NTOU), 24°28.99’N, 122°12.79’E, 500-1183 m, TAIWAN 2003 CD210, 1 Jun.2003; SW Taiwan: 1 female (cl. 22.2 mm), (NTOU) 22°12.92’N, 120°25.93’E, 316-477 m, TAIWAN 2001 CD137, 23 Nov.2001: 3 males (cl. 22.7-41.7 mm), 2 females (cl. 22.9-27.9 mm), (NTOU), 22°13.13’N, 120°20.17’E, 441-789 m, TAIWAN 2001 CD138, 23 Nov.2001.

Colour in life. – Abdomen pink. Carapace white-pink. Antennae, antennules, pereopods, pleopods, and uropods pink-red.

Remarks. – The Taiwanese specimens agree well with the recent account of the species (Ahyong & Brown, 2002). As indicated by Ahyong & Brown (2002), Pacific and northwestern Australian specimens reported by Galil (2000) as *P. phosphorus* are referable to *P. galil*. The most obvious feature distinguishing *P. galil* from *P. phosphorus* is the presence of a median antrorse spine on the first five instead of first four abdominal tergites. Ahyong & Brown (2002) lacked colour-in-life data for *P. galil*, so the species is shown in colour for the first time in Fig. 4(F, G). The present specimens were collected at 316-789 m depth.
Ahyong & Chan: Taiwanese Polychelidae

Pentacheles spinosus Alcock, 1894: 237 [type locality: Andaman Sea].

Polycheles typhlops Heller, 1862: 392, pl. 10 figs. 1-5 [type locality: off Nova Scotia, Canada, 43°10’N, 61°20’W]; Galil, 2000: 292, 340-344, Fig. 24.

Pentacheles spinosus A. Milne Edwards, 1880: 66 [type locality: W of Tortugas, off Dominica].

Material examined. – SW Taiwan: 1 female (cl. 45.1 mm), (NTOU), 22°15.07’N, 120°08.02’E, 748-690 m, TAIWAN 2001 CP133, 21 Nov.2001. Pratas (Dong-Sha Islands): 1 female (cl. 23.4 mm), (NTOU), 1265 m, “R.V. Fishery Researcher 1” stn A-35, 25 Apr.1996; 1 female (cl. 24.2 mm), (NTOU), 1520 m, “R.V. Fishery Researcher 1”, 25 Apr.1996.

Remarks. – Of the known Taiwanese polycehids, *P. sculptus* would most likely be confused with *P. galil*. *Polycheles sculptus* differs from *P. galil* chiefly in bearing two instead of one spine on the outer margin of the basal antennal segment.

Of all known species, *P. sculptus* most closely resembles *P. talismani* from West Africa. Galil (2000) distinguished *P. talismani* from *P. sculptus* by 1) having more lateral carapace spines posterior to the postcervical incision (8-10 vs 6-7), 2) a denticulate instead of smooth double dorsal carina on the sixth tergite and 3) a prominent instead of obsolete proximal dorsal crest on the telson. The lateral carapace spination exhibited by the present specimens of *P. sculptus* (6:3:7-8) shows that the lateral carapace spines posterior to the postcervical incision overlap in the two species. Therefore, the latter two features distinguishing *P. sculptus* from *P. talismani*, namely the form of the dorsal carina on the sixth abdominal tergite and proximal crest on the telson, appear to be the most reliable distinguishing characters.
(NTOU), commercial trawler, 21 May. 1992; 1 female (cl. 41.4 mm), (ZRC 2001.0146), commercial trawler, coll. P. Ng, 22 May. 1998; 3 males (cl. 34.4-43.6 mm), 3 females (cl. 45.4-49.2-49.4 mm), (ZRC 2001.0144), commercial trawler, P. Ng et al., 28 May. 1997. SW Taiwan: 1 ovigerous female (cl. 49.9 mm), (NTOU), 22º12.92’N, 120º25.93’E, 316-477 m, TAIWAN 2001 CD137, 23 Nov. 2001. Tong-Kang fishing port, Ping-Tong County, SW Taiwan: 2 males (cl. 32.3-35.5 mm), (NTOU), commercial trawler, 23 Mar. 1985; 1 female (cl. 46.3 mm), (NTOU), commercial trawler, 25 Feb. 1995; 1 male (cl. 32.3 mm), (NTOU), commercial trawler, 14 May. 1995; 2 males (cl. 34.5-36.1 mm), 2 females (cl. 36.4-41.8 mm), (ZRC 2001.0145), coll. P. Ng et al. Pratas (Dong-Sha Islands): 1 male (cl. 43.8 mm), (NTOU), commercial trawler, Jun. 1991. Taiwan, no specific locality: 1 female (cl. 50.4 mm), (NTOU), 1993. Mediterranean Sea: 2 females (cl. 22.7-26.6 mm), (NTOU, exchanged from B. S. Galil), Israel, 25 Jan. 1995; 1 male (cl. 20.6 mm), 1 female (cl. 21.4 mm), (NTOU, exchanged from B. S. Galil), Israel, 1500 m, 7 Dec. 1995; 1 female (cl. 43.4 mm), (SAM), Genova Gulf, Primavera, Italy, 200-300 m, 1933.

Remarks. – *Polycheles typhlops* is currently attributed a near worldwide distribution, ranging throughout the Indo-West Pacific and both sides of the Atlantic. Four nominal species are currently included in the synonymy of *P. typhlops* with three from the Atlantic (*P. agassizi*, *P. doderleini*, *P. intermedius*) and one from the Indo-West Pacific (*P. hextii*). The Taiwanese specimens agree in most respects with the Mediterranean specimen and Galil’s (2000) figure of an Atlantic specimen, but differ chiefly in the ornamentation of the second to fifth abdominal tergites and telson. In the Taiwanese specimens (Fig. 5A), the anterior and posterior margins, and lower lateral surfaces of the abdominal tergites 2-5 are strongly tuberculate or denticulate, the pleura are distinctly granulate with distinctly denticulate margins (more pronounced in males) and the submedian carinae of the telson are distinctly granulate. In the distinct abdominal ornamentation, the present specimens agree closely with Alcock’s (1894) *P. hextii* from the Andaman Sea, which is presently regarded as synonymous with *P. typhlops*. In contrast to the Taiwanese specimens, the Mediterranean specimens examined here and Galil’s (2000) figured Atlantic specimen have sparsely tuberculate anterior and posterior margins of the second to fifth abdominal tergites, the lower tergal surfaces lack tubercles and the pleura are only sparsely tuberculate (Fig. 5B). The submedian carinae of the telson in Atlantic specimens are minutely instead of distinctly tuberculate as in large Taiwanese specimens.

It is noteworthy that eastern and western Australian specimens of *P. typhlops* in the collections of the Australian Museum agree with the Taiwanese specimens in the strong tergal ornamentation but generally have less denticulate pleural margins. The aforementioned differences between the few Atlantic and Pacific specimens suggests *P. typhlops* might represent a species complex. If this proves the case, *P. hextii* will have to be resurrected for at least part of the Pacific material. The present specimens are referred to *P. typhlops*, however, until types of all nominal synonyms of *P. typhlops* and more specimens from all regions can be studied to assess

Fig. 5. Second abdominal tergite and pleuron, right lateral. A. *Polycheles typhlops* Heller, 1862 (Nangfangao fishing port, ZRC 2001.0144, ovigerous female cl. 49.4 mm). B. *Polycheles typhlops* Heller, 1862 (Genova Gulf, Mediterranean Sea, SAM, female cl. 43.4 mm). Scale = 5 mm.
the stability or degree of variation in the abdominal granulation.

Distribution. — Widespread throughout the Indo-West Pacific and both sides of the Atlantic; 77-2055 m (Galil, 2000).

KEY TO THE POLYCHELIDAE OF TAIWAN

1. Epipod of maxilliped 3 longer than ischium. Carapace without submedian cervical spines (i.e., the pair of spines at the anterior end of the median postcervical carina). Posterolateral margins of the carapace distinctly convex *Pentacheles laevis*
 - Epipod of maxilliped 3 vestigial, less than one-third ischium length. Carapace with submedian cervical spines. Posterolateral margins of the carapace nearly straight *Polycheles* spp.

2. One rostral spine. Dorsal orbital sinus subdivided into two by interlocking spines lining the margins of the orbit *P. typlops*
 - Two rostral spines. Dorsal orbital sinus not subdivided 3

3. Dorsal orbital sinus V-shaped. Posterior division of lateral margin of carapace with 12 or more spines 4
 - Dorsal orbital sinus U-shaped. Posterior division of lateral margin of carapace with fewer than 11 spines 5

4. Outer margin of dorsal orbit spineless. Branchial carina coarsely tuberculate. Dorsum of abdomen tuberculate *P. coeifer*
 - Outer margin of dorsal orbit unarmed. Branchial carina obsolete, unarmed. Dorsum of abdomen smooth, not tuberculate 6

5. Median carina on abdominal tergite 5 without antorse spine
 - Median carina on abdominal tergite 5 with antorse spine 6
 - Second abdominal pleuron without anterior spine. Posterior margin of cervical groove with 3-4 spinules between midline and branchial carina *P. auriculatus*
 - Second abdominal pleuron with one or more anterior spines. Posterior margin of cervical groove with 1 spine between midline and branchial carina *P. aculeatus*

6. Inner angle of dorsal orbital sinus rounded, unarmed ... *P. helleri*
 - Inner angle of dorsal orbital sinus with a spine 8

7. Outer proximal margin of basal antennular segment with 1 spine *P. galil*
 - Outer proximal margin of basal antennular segment with 2 spines .. *P. sculpitus*

LITERATURE CITED

Milne-Edwards, A., 1880. Reports on the results of dredging, under the supervision of Alexander Agassiz, in the Gulf of Mexico.

