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ABSTRACT. — In conservation management, it is important to understand environmental tolerances at every stage of a 
species’ life cycle. As salinity is considered one of the most significant ecological stressors for marine bivalves, this ex-
situ study examined several larval stages of the fluted giant clam (Tridacna squamosa Lamark, 1819) exposed to 
hyposaline water. Late stage pediveligers or early stage juveniles survived in distilled fresh water for 10 min to 5 h, and 
showed no sign of injury during a 48 h follow-up period. Trochophores were able to survive for 10 min to 3 h in 9 ppt 
salinity water, and veligers were able to survive for 1 h to 42 h in 12 ppt salinity water. Results suggest that giant clam 
larvae in Singapore’s waters are able to survive exposure to hyposaline water such as that associated with high rainfall 
or river outflows. 
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INTRODUCTION 
 

Giant clams are now extremely rare in Singapore (Guest et al., 2008; Neo & Todd, 2012). They face threats from 
harvesting, land reclamation, industrial pollutants, and anthropogenic turbidity, but conservation efforts, including a 
restocking programme, are underway (Neo et al., 2012). In order to determine appropriate locations for protecting 
and/or restocking giant clams, and to further understand their ecology, it is important to understand their environmental 
tolerances at every stage of their life cycle. 
 
Salinity is considered one of the most consequential environmental stressors for marine bivalves (Tettelbach & Rhodes, 
1981; Miller et al., 2007; de Albuquerque et al., 2012). When experiencing water with elevated temperatures and low 
salinity, many bivalve species have the ability to settle in, or migrate to, deeper water which is cooler and more saline. 
This is not an option for giant clams in turbid waters such as those around Singapore, as their algal symbionts require 
light for photosynthesis. Marine larvae in Singapore’s waters are likely to encounter hyposaline water, either in 
tidepools or other shallow water during periods of heavy rain, or in the vicinity of river or reservoir outflows. Fresh 
water may also be used in giant clam mariculture facilities as a method of killing parasites or to remove algal mats. 
 
There has been very little research into the salinity tolerances of giant clams at the larval or other life stages. Neo et al. 
(2013) exposed Tridacna squamosa larvae to water with reduced salinity, but only as low as 27 ppt, while Blidberg 
(2004) exposed Tridacna gigas larvae to salinities as low as 20 ppt. Although the older life stages are generally easier to 
study experimentally, we are aware of only one hyposalinity study on Tridacna gigas juveniles 
(Rachman & Anshary, 1997), and one on Tridacna squamosa adults (Blidberg, 1998). 
 
There have been attempts to infer the salinity tolerances of bivalve larvae empirically by recording environmental 
variables at locations where larvae are present or absent (Thompson et al., 2012; Soria et al., 2013; Borges et al., 2014), 
but this approach carries the risk of unidentified confounding factors, and is unlikely to be successful with giant clams, 
the timing of whose reproductive cycle is not fully understood. Studies on gill tissues have been used to determine a 
theoretical maximum salinity tolerance for some species (Yaroslavtseva et al., 1990; Yaroslavtseva & Sergeeva, 2009), 
but there is no guarantee that larvae can survive up to this theoretical point. There are also reports of within-species 
differences in tolerance based on genetic variation (Innes & Haley, 1977; Newkirk, 1978; Deng et al., 2009; Eierman & 
Hare, 2013), and evidence that the timing of salinity changes can impact mortality (Davenport et al., 1975). 
 
Much of the marine bivalve research into larval hyposalinity tolerance has little applicability to Tridacna squamosa’s 
ability to survive such conditions. Rather than directly record mortality, many marine bivalve studies instead investigate 
fertilisation success (Wang et al., 2012), trochophore motility (Suquet et al., 2013), larval growth rate (Thiyagarajan & 
Ko, 2012), vertical migration (Hidu & Haskin, 1978; Mann et al., 1991; Dekshenieks et al., 1996; Ishida et al., 2005), or 
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settlement (Devakie & Ali, 2000; Tezuka et al., 2013). Studies that do examine salinity-induced mortality are often 
conducted on brackish-water species (Cain, 1973; Verween et al., 2007) or species which are euryhaline. Euryhaline 
oysters in the genus Crassostrea are the most frequently studied marine bivalves in larval salinity tolerance research 
(Lemos et al., 1994; Tan & Wong, 1996; Xu et al., 2011), although larvae of many other euryhaline species are also 
used, including pearl oysters (Pinctada; Doroudi et al., 1999; O’Connor & Lawler, 2004), other oysters (Crassostrea, 
Ostrea and Placuna; Davis, 1958; Davis & Ansell, 1962; Madrones-Ladja, 2002), mussels (Mytilus; Brenko & 
Calabrese, 1969; Qiu et al., 2002; Yaroslavtseva & Sergeeva, 2009; Vekhova et al., 2012), shipworms (Teredo; 
Hoagland, 1986) and sediment-dwelling clams (Cyrtopleura, Donax, Mercenaria, Mulinia, Mya, and Ruditapes; 
Davis, 1958; Stickney, 1964; Calabrese, 1969; Gustafson et al., 1991; Numaguchi, 1998; Carstensen et al., 2010). Low 
salinity responses of the larvae of more stenohaline marine bivalve species such as scallops (Argopecten, Mimachlamys, 
and Pecten; Tettelbach & Rhodes, 1981; O’Connor & Heasman, 1998; Christophersen & Strand, 2003) may be more 
comparable to those of giant clams, which are fully marine. There are also studies into the effects of hypersaline water 
on marine bivalve larvae (Iso et al., 1994; Arellano & Young, 2011; Voorhees et al., 2013), but hypersaline conditions 
only occur in Singapore in the immediate vicinity of desalination plant effluent, or in tidal pools during the dry season. 
Some previous experiments have produced limited results as only a narrow range of salinities was tested (Nell & 
Holliday, 1988; Robert et al., 1988; His et al., 1989), whereas others have used a broad range of salinities and 
established lethal limits for their target species (Davis, 1958; Davis & Ansell, 1962; Calabrese, 1969). 
 
We conducted several ex-situ observational studies, exposing Tridacna squamosa larvae to extremely low salinities to 
observe any changes in behaviour and determine whether survival was possible under these conditions. If exposure to 
low salinities (such as those associated with high rainfall or river outflows) were to cause mortality during the larval 
dispersal phase it would have implications for the conservation management of Tridacna squamosa. Such information 
is also useful to determine whether it is safe to use fresh water as a parasite/algal control method in giant clam 
aquaculture. 
 
 

MATERIAL AND METHODS 
 

All three observational studies used larvae of Tridacna squamosa which were spawned and reared at the Tropical 
Marine Science Institute, on St. John’s Island, Singapore. 
 
Study 1. — In Nov.2012, six late stage Tridacna squamosa pediveligers or early stage juveniles of shell length from 2.3 
to 3.0 mm were placed in zero-salinity distilled water for time periods ranging from 10 min to 5 h. The studies were 
carried out indoors in an air-conditioned room. Each clam was removed from the flow-through seawater aquaculture 
system, and placed directly into a well plate (one clam per well) which contained approximately 15 ml of distilled 
water. Each clam was left for a different time period (10 min, 20 min, 30 min, 1 h, 2 h, and 5 h) after which it was 
placed in a petri dish of seawater for immediate observation under a dissecting microscope and then moved outdoors to 
its own 1 L glass container which received flow-through seawater. The clams were then monitored for 48 h for any 
mortality; behavior was also observed. 
 
Study 2. — In May 2014, 4 ml samples of seawater (salinity 32 ppt) containing Tridacna squamosa trochophores were 
added to five wells in a well plate containing 10 ml of distilled water, and one well containing seawater as a control. 
The salinity of the non-control wells (10 ml distilled water + 4 ml seawater) was verified to be 9 ppt using a hand-held 
refractometer. The study was carried out in a large outdoor shed which provided some shade, but was not air-
conditioned. After varying periods of time (10 min, 30 min, 1 h, 2 h, and 3 h), the water and larvae were removed from 
the well plate and placed into a petri dish full of seawater. The petri dish was then observed under a dissecting 
microscope for actively swimming trochophores. 
 
Study 3. — Also in May 2014, 6 ml samples of seawater (salinity 32 ppt) containing Tridacna squamosa veligers were 
added to 10 wells each containing 10 ml of distilled water, and two wells containing seawater as controls. The salinity 
of the non-control wells (10 ml distilled water + 6 ml seawater) was verified to be 12 ppt using a hand-held 
refractometer. The studies were carried out in the same shed as the trochophore experiment (Study 2). After varying 
periods of time (1 h, 2.5 h, 4 h, 6 h, two at 18 h, two at 24 h, and two at 42 h), the water and larvae were removed from 
the well plate and placed into a petri dish full of seawater. The petri dish was then observed under a dissecting 
microscope for actively swimming veligers, and observed a second time one hour later to determine if swimming 
patterns had changed. 

 
 

RESULTS AND DISCUSSION 
 

Upon being placed in distilled water (Study 1), the six late stage pediveligers or early stage juveniles withdrew their 
mantle tissue and siphons and closed their valves tightly. This is a short-term survival strategy as, if employed for 
extended time periods, it will induce hypoxia (Kim et al., 2001). When returned to seawater, the clams opened their 
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valves and extended their mantle and siphon tissues within 30 minutes. The clams which had been kept in distilled 
water longer appeared to take longer to return to their normal state, however, this was possibly an effect of longer 
exposure to low water temperatures (due to the room’s air conditioning). All of the clams survived during the 48 h 
follow-up observation period, and were able to climb up the sides of their glass containers to the air-water interface (a 
common behaviour among Tridacna squamosa of this size when kept in smooth-surfaced containers). 
 
Upon being placed in water of 9 ppt salinity (Study 2), all trochophores ceased swimming and sank to the bottom of the 
well plates. This sinking behavior may benefit the organisms in the wild—when larvae near the ocean’s surface are 
exposed to hyposaline water during rainstorms, they may sink into deeper, more saline water where it is safe to resume 
their normal activities. When the trochophores in this experiment were placed back into seawater, some in each group 
resumed swimming, although those in the 2 h and 3 h groups swam with a weak tumbling motion, rather than the 
distinctive vigorous circling pattern of healthy trochophores. The subsequent veliger experiment raises the possibility 
that this weaker swimming pattern may have been temporary. 
 
Upon being placed in water of 12 ppt salinity (Study 3), the veligers also ceased all swimming activity and sank to the 
bottom of the well plates. When placed back into seawater, some veligers in each group resumed swimming, although 
they appeared to be pivoting around a point rather than swimming in large circles (their usual behavior). However, after 
remaining in seawater for one hour, the veligers had resumed their normal swimming activity. Shortly before the 42-h 
observation, veligers were seen actively swimming in one of the hyposaline (12 ppt) wells. As they were not under 
continuous observation, it is possible that they periodically engaged in short periods of swimming in order to obtain 
oxygen. It is also possible that evaporation from the well raised the salinity above a threshold where the veligers could 
conduct normal activities safely. 
 
As Tridacna species have a short pelagic larval cycle, the long-term exposure of trochophores and veligers to 
hyposalinity cannot be studied. However, settlement rates of Tridacna larvae under hyposaline conditions could be 
measured, as has been done for other species (Devakie & Ali, 2000; Tezuka et al., 2013). Pediveligers and juveniles 
could be exposed to sublethal hyposalinity for longer time periods, which in other marine bivalves affects immune 
response (Gagnaire et al., 2006; Matozzo et al., 2007) and growth rate (Nell & Holliday, 1988; Navarro & Gonzalez, 
1998). Chronic hyposalinity may even lead to a ‘dwarf’ bivalve population (Westerbom et al., 2002; Riisgard et al., 
2013). A longer growth period or smaller ultimate size will impact survival, as smaller bivalves are less likely to survive 
adverse environmental conditions (Nell & Paterson, 1997), and may not reach an ‘escape size’ from some forms of 
predation. Bivalves living in hyposaline water may also be more vulnerable due to weaker shells, adductor muscles, 
and/or byssal threads (Wang et al., 2012). 
 
Giant clams in Singapore which are exposed to hyposaline water are likely to be simultaneously exposed to additional 
stressors, particularly elevated water temperatures and turbidity-induced shading. Being exposed to these other stressors 
is likely to reduce the clams’ ability to cope with hyposalinity (Chanley, 1958; Castagna & Chanley, 1973; La Peyre et 
al., 2013), therefore multi-stressor studies will be necessary to determine Tridacna squamosa’s tolerance to hyposaline 
waters under natural conditions. 
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